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SUMMARY

OBJECTIVE

The main objectives of this research program are

(1) to obtain an'analytical solution for the nonlinear

response and ultimate loads of two hinged reinforced

concrete circular arches, subjected to static and dynamic

loads; (2) to determine experimentally the static and

dynamic ultimate loads of two-hinged semicircular reinforced

concrete arches under certain typical loading conditions

and (3) to estimate experimentally as well as analytically

the values of the ductility factor p at failure, )

being defined as the ratio of maximum deflection at failure

to the elastic limit deflection.

The nonlinearity of the response is due to the

nonlinear stress-strain curve of concrete and also due to

the effect of large deflections on the strains and

equilibrium of an element of the arch.

SCOPE

The analytical part of this research program

includes the formulation of the governing equations and

boundary conditions for both static and dynamic cases,

taking into account the nonlinear stress-strain curve of

concrete and the effects of large deformations on the

strains and equilibrium of the arch element. The governing

equations are obviously nonlinear and discontinuous and

are solved by numerical methods. Programs for the IBM 7090

digital computer are prepared for computing the response

and the ultimate loads, using these numerical methods.

The experimental program includes the testing

of small scale semi-circular arches to determine the

static and dynamic ultimate loads and the ductility factor p
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for the following loading conditions:

1. Uniformly distributed symmetric radial loads.

2. A concentrated load at the crown.

3. Antisymmetric concentrated loads at quarter

points.

CONCLUSIONS

The experimental and analytical studies indicate

that the approximate conventional theory based on limit

analysis is quite adequate to predict the static ultimate

loads of the underreinforced arches. The dynamic ultimate

loads for compression mode loading can also be predicated

by approximate theory provided that an appropriate dynamic

increase factor (based on the increase in material proper-

ties) is used. However, it is not clear whether a

satisfactory approximate theory can be developed to predict

the ultimate dynamic load carrying capacity of the arch,

subjected to a concentrated dynamic load at the crown or

antisymmetric concentrated dynamic loads at quarter points.

The experimental and analytical investigations

also indicate that the natural periods of the arches have

a significant influence on the dynamic load carrying

capacity of the arches in the cases of a concentrated

load at the crown and antisymmetric concentrated loads

at quarter points. The mode of failure under both static

and dynamic loads is quite ductile in these cases as

compared to the compression mode loading.

Ui
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CHAPTER 1

INTRODUCTION
0

1.1 OBJECTIVE

This research program has the following threefold
0

objectives:

a) To obtain an analytical solution for the non-

linear response and the ultimate loads of two-hinged

circular reinforced concrete arches under static and

dynamic loading. The nonlinearity of the response is

obtained by including the effects of the nonlinear stress-

strain curve of concrete under compression and those of
Q

large deflections on the strains and the equilibrium of
0

an ele-merib of the arch.

b) To determine experimentally the static and dynamic

ultimate loads of two-hinged semicircular reinforced concrete

arches under certain conditions of loading.

c) To obtain the analytical and the experimental values

of the ductility-factor A at failure, AJ- being defined

as the ratio of the maximum deflection at failure to the

elastic limit deflection.(Refer to J 2.6)

1.2 PREVIOUS WORK

1.2.1 Analytical Work:

In 1932, Cross and Morgan(1)* summarized

"- Superscripted numbers in parentheses refer to
references given inthe bibliography.
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methods of analysis and design of reinforced concrete arches

under static loading. These methods were based on the con-

ventional linear elastic theory for reinforced concrete

structures. In 1951, a special committee of the American

(2)
Concrete Institute published a joint report on plain and

reinforced concrete arches. This report recommends a

numerical procedure to account for the moments caused by the

axial thrust and the deflection of the arch. It also suggests

the use of Whitney's stress block method for obtaining the

ultimate strength of the cross-section of the arch. In

(3)1953, Onat and Prager published a paper concerning limit

analysis of arches constructel from homogeneous elastic-

plastic materials. This paper proposes a theory to account

for the reduction of the plastic moment of a section which

is subjected to both a moment and a thrust. However, since

in this paper the properties of materials are considered to

be identical in compression and tension, the proposed theory

cannot be applied to reinforced concrete arches. In 1960,

Jain published a paper(4) on ultimate strength of reinforced

concrete arches. In this paper the author has employed, a

-2-



bilinear elastic-plastic stress-strain curve for concrete

and obtained the ultimate loads making use of an iterative

procedure to account for large plastic deformations of the

arch.

In the fi&ld of dynamic response, Love(5) has

presented the mathematical formulation of the vibration of

a circular elastic ring and obtained the normal functions

of free vibrations. In 1960, Eppink and Veletsos published a

paper(6) on dynamic analysis of circular elastic arches. Later

this work was continued to include inelastic effects(7). The

authors have considered a material with bilinear strees-
S

strain curve and identical properties in compression and

tension. They have developed a set of governing equations to

include the effects of large deflections and have used a

numerical method to solve these equations.

1.2.2 Experimental Work:

A series of large scale static tests on reinforced

concrete arch ribs(15) and three span reinforced concrete

arch bridges(16) were conducted by Wilson. In this work

the measured values of the reactions and stresses due to

unit loads were found to be in close agreement with the

theoretical values based on linear elastic theory. Jain(4)

tested two-hinged reinforced concrete arches to failure and

showed good agreement between results obtained from the

tests and those obtained by using his proposed theory.
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In the field of dynamic testing Technical Report

No. 2-590 of Corps of Engineers discusses the results of

tests conducted on underground and buried fixed-end and

two-hinged reinforced concrete arches. This test program

was a part of operation PLUMBBOB in 1957.

1.3 SCOPE

1.3.1 Analytical Study:

A set of equations and boundary conditions governing

the behavior of a reinforced concrete arch are formulated.

The equations are derived from the conditions of equilibrium,

strain-displacement relations and force-strain relations.

The equations in cases of the static and the dynamic response

differ in that in the latter case, the equilibrium equations

include the effects of inertial forces and the dynamic

properties of both concrete and steel are. used to obtain the

force-strain relations.

A simultaneous solution of the governing equations

yields the response of the reinforced concrete arch. The

equations being nonlinear and discontinuous * they are solved

by numerical methods. Programs for the IBM 7090 digital

computer are prepared for computing the response using these

methods. The ultimate load of the arch is obtained as a load

* The force-strain relations are discontinuous since they consist

of three groups (Figs. 2.5b, 2.5c, and 2.5d), each valid for

a different strain distribution.
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under which the maximum compressive strain in the arch reaches

or exceeds the ultimate strain eu, of concrete. The small

reserve strength which exfsts in the arch at this stage is

neglected. Because of the particular definition of ultimate

load used in this work, the analytical methods developed

can predict the ultimate loads of only the following types

of loadings:

a) Uniformly distributed compression mode
0

loading 0

b) Anti-symmetrically distributed deflection

mode loading

and c) Symmetrical and antisymmetrical concentrated

loads except a single concentrated load

at the crown. This aspect is discnssed in

detail in § 2.1.3.

1.3.2 Experimental Study:

The scope of the experimental program included the

testing of small scale model arches and thedetermination of

the static and dynamic ultimate loads and the ductility-

factor AA at failure for the following conditions of loading:

a) Uniformly distributed symmetric radial loads

b) A concentrated load at the crown

and c) Antisymmetric concentrated loads at

quarter points.

In the dynamic cases, a failure load pulse of triangular shape



having a rise time between ten and twenty milliseconds was

applied. Dynamic tests were also conducted under partial

loads for the uniformly distributed symmetrical loading case.

1.3.3 Comparison of Analytical and Experimental Studies:

Within the scope outlined above a comparison

between analytical and experimental investigations is obtained.

Also, the s~atic and dynamic behaviors of two-hinged reinforced

concrete arches. are compared.

"-6-



CHAPTER 2

THEORETICAL INVESTIGATION

2.1 MATERIAL PROPERTIES

In this article the nonlinearity of the strees-strain

curve of concrete under compressive loading is discussed.

Also the effects of rapid rates of straining on both concrete

and reinforcing steel are presented herein.

2.1.1 Concrete:

a) Static Behavior: A typical stress-strain

curve for a concrete cylinder under static compressive loading

is shown in Fig. 2.1. Hognestad(8) suggested that Ritter's

parabola was a good approximation for the curve up to ultimate

stress and that Inge Lyse's equation for the initial tangent

modulus was satisfactory, provided that f in that equation
c

was replaced by 0.85 fc. Hognestad assumed the descending

portion of the curve to be a straight line. However, the

shape and the extent of this portion of the curve is both

uncertain and difficult to measure. Hence, Hognestad's

expressions are used to describe the stress-strain curve

upto failure. The expressions are

I, I

0.85 L ( ).J•
C C

E E 1800000 + 46o0 s C2..b)
Soc C C "

• • . , , I i i I I I I I-I I-



//

C= .2.1 c)
C EC

ne LA .03 o. 8

where ft = Static ultimate stress of

concrete obtained from

cylinder tests

ec = Strain cqrresponding to
stress fc

eu = Static ultimate strain of

concrete

Esoc = Static initial tangent

modulus of concrete

and fc and ec = Corresponding stress and
strain on the static curve

VI

e; e
CC

e' e e
C dc

5a¼ ecrecd

Figure 2.1 Static and Dynamic Stress-Strain
Curves for Concrete

. .. r. . r. .-8-



The tensile stresses in concrete under static

loading are neglected.

b) Dynamic Behavior: A typical stress-strain

curve for a concrete cylinder under compressive loading with

a rapid strain rate is also shown in Fig. 2.1. Watstein(9)

compared the compressive strengths of concrete cylinders

tested at rates of strain varying from a low value of

10-6 in./(in.)(sec.) to a very high value of 10 in./(in.)(sec.).

His work indicates that, with very high rates of strain, the

dynamic ultimate strength can be much greater than the static

ultimate strength. Yang, et al(10) suggest that the parameters

associated with the dynamic stress-strain curve may be

obtained by using

4C (2. 2. ck)
/ I

e e

CICI

e ife - e' + I
dc 0 0 (2.2-6)

and Eao,_ E O2.2.c.)

-9-



where f= Dynamic ultimate stress of
concrete obtained from cylinder
tests conducted at rapid strain
rates

edo = Strain corresponding to stress fdc

Edoc = Dynamic initial tangent modulus
of concrete

dc = Dynamic strain rate of concrete

dc
e Static strain rate of concrete

Making use of relations similar to those used for

static behavior we obtain the following expressions.,

:dc E -:- - - (2.sb)

e e e*
ed, ~d dc.,= ~o8 .. ,

Where f dand e = Corresponding stress andstrain on. the dynamic curve

and e du = Dynamic ultimate strain of
concrete.

Stress-strain curve for unloading and reloading of

concrete is assumed to be the same as that for the initial

loading. Also, the tensile stresses in concrete are assumed

to be negligible.

-10-



2.1.2 Reinforcing Steel:

a) Static Behavior: The stress-strain curve for

steel under static compressive and tensile loading is shown

in Fig. 2.2. The following expressions are used to describe

the stress-strain relation.

S=EI e <o e e

S S w2.A)

Y

where f Static yield- stress of steel

e = Static yield strain of steelY

Es = Modulus of elasticity of steel

and f sand es = Corresponding stress and strain
on the static curve.

Stromn P an•c e

S1 /

Figure 2.2 Static and Dynamic Stress-Strain Curves
for Steel
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b) Dynamic Behavior: The effect of rapid strain

rates is to increase the yield stress of steel above the

values obtained under static loading. The modulus of elasticity

remains practically unaffected. Figure 2.5 of Ref.(ll) shows

the effect of strain rate on the dynamic yield stress of

steel. It can be seen that for both structural and inter-

mediate grades, the increase in the yield stress above the

static value varies between 20 and 40% when the time to reach

this yield stress varies between 0.001 and 0.1 seconds.

Hence in this work the dynamic yield stress is assumed to be

30% larger than the static yield stress. Behavior of steel

in tension and compression is assumed to be identical.

The dynamic stress-strain curve for steel is

also shown in Fig. 2.2. The following expressions describe

the stress-strain relationship.

C1 S ds dI

rind f r. I. e > e J
The stress-strain curve for unloading is

assumed to be linear (Fig. 2.2), the slope being equal to E S

The relo&ding curve is assumed to be linear

with a slope equal to E when the dynamic strain is less than

the previous maximum dynamic strain; however, when the dynamic

-12-



strain is greater than the previous maximum dynamic strain,

the reloading curve is assumed to be indentical with the

initial loading curve.

2.1.3 Failure Criterion:

A failure criterion based on excessive compressive

strain in concrete has been used. It is assumed that failure

occurs when at any section of the arch the combination of

the thrust and the moment produces a compressive strain

which exceeds the ultimate strain for concrete: eu. Such

a criterion would indicate failure when the strain in the

extreme fibre of any section becomes greater than e

This criterion neglects a certain reserve strength

in the structure because even after the strain in the extreme

fibre exceeds e u, the inner fibres up to the neutral axis

have low compressive strains. Further, in a statically

indeterminate structure, more sections than one have to

fail before the structure collapses. If the load distribu-

tion on the structure is such that the failure of the necessary

number of sections (the number depending upon the degree of

indeterminancy) occurs at a load which differs only a little

from the load at which the first section fails, the failure

criterion used here would be adequate. Such lo.ad distri-

butions on a two-hinged circular arch are,

a) uniformly distributed symmetrical loads

b) uniformly distributed antisymmetrical loads

-13-



and c) symmetrical and antisymmetrical concentrated

loads, except a concentrated load at the crown.

This failure criterion is inadequate when a single

concentrated load is considered because when the maximum

compressive strain at the section under the load exceeds eul

the other sections of the arch have low compressive strains

and hence the arch has a considerable reserve strength.

The failure criterion thus gives a lower bound of

the ultimate load for the above-mentioned distributions.

However, for design purposes this.may be a realistic liriit.

2.2 GEOMETRY OF THE ARCH

The two-hinged arch under consideration is qhown in

Fig.2.3. The geometry of the arch is described by the

following:

r = Mean radius of the arch

S= Half the central angle

b = Width of the cross section

t = Depth of the cross section

and e = Angle subtended at the center by an arc
between the left support and any point on
the arch.

Cross Se.Vo 6xt

Figure 2.3 Geometry of the Arch

-14-



2.3 STATIC RESPONSE

2.3.1 Governing Equations:

a) Equations of Equilibrium: Fig. 2 .4 shows the

geometry of deformation of an element of the arch and the

forces acting on it.

'Cie

d e

-15

Ode) d~n 
-•ow 

01 dw CO

PosN+v cltis49

Figure 2.4 Forces Acting on a Deformed
Element

-15-



Considering the equilibrium of the forces in

r and 9 directions and the moment equilibrium, the following

equations are obtained:

2. 20

ck (de co -.c a) do cc cos(qý) .5;*$ŽcAe) 0

(2 .6)

r d8 m4(d3 sl Y% sl n( & c o(d

OIN COSc0 (d2L) C'(A9h) 4- d G r-05 (4je) '(ce)

C21.'7'

~~~t s~i ID o-t LG! C)n( ) 28

Cie 00 44 C248

where Pr =Radial component of load per unit
length of the-arc

p9  Tangential component of load per
unit length of the arc

dO Angle subtended at the center by
the element before deformation

A= Change in dG due to deformation

N Axial force on the section

M = Bending moment on the section

Q = Shear force on the section

-16-



b) Strain-displacement Relations: Assuming that

the normals to the middle surface remain normal after the

deformation and that the shear strains are negligible,

expressions for the strain in the middle surface, e. and the

change in curvature 95 are obtained as follows (Fig. 2.4):

The length and the curvature of the undeformed

element are

a r (c -)

The square of the length of the deformed

element is

CI +(V-U')AE + CCW C) Cb

where u - Tangential displacement of the
element, measured positive when, the
element moves clockwise

and w = Radial displacement of the element,
measured positive when th6 element
moves toward the center.

Since the compressive strain in the middle

surface is

e - As

0 ds

we get

2..e V-d65 t . 2. (C)

-17-



From equations (b) and (c), neglecting the

higher order terms we obtain,

e I ( L_ ou) _ -L_. E -ý (•• L- A•
o r d 2- Ole) CAO

The linear expression,

r de-

is used to obtain the change in angle dG due to deformation.

Again, since the •ronlinear ter'ms contribute

insignificantly to the quantity X, a linear' expression is

obtained as follows:

The curvature of the deformed element is

r I + Ade)• , (ck i Ads) Ce)

Using linear expressions for AdG and CidS,

equation (e) becomes

Ir °

Or, neglecting the quantities of higher order,

-1,8-



_ - _ + _ _ 2. _ 1 w
r " "" rI cdO• v. do

00 o

Hence, the change in curvature,

+2

r I r 0e CAO'

c) Force-strain Relations: Fig. 2.5a shows a

symmetrically reinforced rectangular concrete eection of an

arch, acted upon by a positive bending moment M and a positive

thrust N. Depending upon the relative magnitudes of M and

N, the strain distribution across the section will be as

shown in either Fig. 2.5b or Fig. 2.5c. It is assumed that

the ratio of ro/t is large enough to neglect the nonlinearity

of the strain distribution across the depth of section. If

the thrust N is negative, it is possible that the entire

section will be in tension. (Fig. 2.5d)

4 .

0e e f e

i o
s0~ e e /

C e

cast Icase~ 2- C

00) Cc)

Figure 2.5 Arch Section and Possible
Strain Distributions

-19-
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Noting that positive bending moment causes

a decrease in the initial curvature of the arch, we have

(e I e -
e -- (ete

02

A(el e4 )
t

Using the stress-strain properties of concrete

and steel described in S 2.1.1a and 2 .1.2a respectively, the

following relations between M, N, e , e 0, e and e 4 are obtained,

Case 1 - Section completely in compression

i.e., e < e and e > 0

2T//2 Ce--e)

M _ Es~ j

C 4 1

Cel+ e 4)_
- P 4-A

-2,0-



where A = Area of tension steels

A = Area of compression steel = A
s s)(As + As)I

Pt - bt

n = Modular ratio, E s/Esc

Esc = Secant modulus of concrete

(e -e ) (e - e)

-44 4

2- (e__ 3 ('e_-A~

Case 2 - Section partly in compression and partly
in tension.
i.e., e <e and e <o

N A, e (2,14)
TI (- - 1 )]

4'

.%e -e 1  -e
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I %

wyi'ere A ý e,-

3 e,

!4

c 2.

The steel strain e. or e 3 in the equations

(2.12) through (2.15) is replaced by ey when either the bottom

or the top steel yields.

Cs - Section completely in tension
i.e. e< 0 and e dO

A,

•bt 2f " 2.
C-

M t C12.17)

It is evident that in order to satisfy both

(2.16) and (2.17) simultaneously, the tensile strains -e

and -e. must be below the tensile vield strain -e

d) Boundary Conditions: The boundary conditions

which govern the solution of the two-hinged arch problem are

At 9 = 0 and Q = 2

u = w = M = 0 (2.18)

1-22-



2.3.2 Nondinmensionalization of the Equations:

The governing equations (2.6) through (2.18)

are converted into nondimensional form using the following no-

tation:

560 -O

C
- L - .-

C-

rr

C-- "

The nondimensional equations are:

Conditions cf equilibrium:-

sin Fs ActE) _q +co5 cAde)N1

rc

0

+cot -OS(&CAe) it &
r 0 dG

=0 (2.20)
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dý Co5ec P + 2-b S,0Z- ,, -
0

_ A5 rct (d) co (AdCi) dN sY -c)d
r ) d E)

0

Strain-displacement relations:

W I du- •W (a..- )

-.45 (5.C1)

0

Force-strain relations:

-2 4
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Case1: If e e and e >

+ E- A, . 2G

C. (e e -e
0C

(e +)(ee)2 , (2.27)

aCe -e)
A

Case 2 : If e e and e <0
S u C)

N -s e • e J -t- •

." _ (e -e)
A

- - ,4F (iA\e

(e 4e) A (.2.9)

;L Ce -e)
4 I
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Case 3: If e and e

24~

Ce

S CA

C-

and boundary conditions:

At 9 0 and 9 2

U = W M 0 (2.32)

2.3.3 Finite-difference Formulation:

In order to obtain a numerical solution, the

differential equations (2.20) through(2.24) are converted

into difference equations. The form of the difference

equations chosen is suitable for the numerical method described

in the next article. The difference equations represent

a discrete system consisting of (m-l) segments denoted as

J-l, j, j+l, etc. The ends of the segments are denoted

as i-l, i, i+l, etc. (Fig. 2.6). Each of the segments

subtends a nondimensional angle A& at the center of the arch.

The unknowns M, R, Q, eo, ; , U and W at each section

are denoted by subscripting them, Mi, Ni, etc. The loads

Pr and P9 on each segment are denoted as PrJ' PJ' etc.

-26-



Figure 2.6 The Discrete System

From equation (d) of §2.3.lb,

Aole = _. o!,, .dO

2.

Using forward differences,

0

Using the averages of the values of

and Q at Sections i and i+l and the forward differences

for the derivatives of N, Q and M, the differential

equations (2.20), (2.21) and (2.22) are transformed

into the following difference equations,

-27-



A C- C. tO -N. - 2 2 P.4)
L *^ L ~ . j

-B. , N. N -o +. CN. +C P. (C..5)

av~c M. M. C Cq. + t.) C (N. Wk. (. )
LL, L .+ 1 L £ 1. Le l

0r

c c c 0ot( - )

C Cosec(
r A --0-

c = A6
2t Co

A = C cosCAO) - c Sin (CAo)

S= - C .5'V C& e) -C %cc's (.Ale)

c C C os A•e +c S•,%,n

S =-C s+• ACe' c •os (,o
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The strain-displacement relations (2.23)

and (2.24) are used to obtain difference equations which

relate displacements at sections i and i+l.

De~n i + - (A cW

2

i-2 I e.I(WJ-w 1
2  (Wý, -WI-)

) (2.%8c8)

, ol
e ~

01¾ Ujz U. -128b)
L

i, ,2 W_.•3-- -
"V. = ru / - -

II

-I I -W I

Alous~hj Tajloar se-,r~es

W. = W. -i- U. (AE) t - ... 3g)
U. .- .

(~) ±(2.2.
-29-



The finite-difference approach used above

was chosen as the most suitable to obtain a good numerical

solution after making a preliminary study of various possible

approaches.

2.3.4 Numerical Method of Solution:

A two-hinged circular arch has a degree of

static indeterminancy equal to one. The structure is

analysed by treating the reaction at the right hand support

as the redundant (Fig. 2.7). The magnitude of the

redundant is determined by first assuming a certain

value and then refining it by successive iterations

until all the governing equations are adequately sat-

isfied.

A

Figure 2.7 Arch with External Reactions

The method can be described as follows:

Trial 1 -

(a), The arch is divided in (m-l) segments

and the nondimensionalized radial and tangential components

of the load, distributed on each segment, are obtained.



(b) An initial nondimensional value H I is

assumed for the horizontal reaction at the right support.

A good initial value can be obtained from the linear

elastic analysis of the arch.

(c) Using equations of static equilibrium for the

entire structure, the nondimensionalized values of the

other three reactions, viz. HA, V, and V are obtained.
B

(d) Equations (2.37) are now evaluated assuming

(6 E)) = 0. Making use of V, H, M and the constants
j A. A A

c 1 , c2, ... , equations (2.34), (2.35) and (2.36) are

solved for (m-2) segments. Thus the forces N and Q and

the moments M are known at all the m sections.

(e) At all the m sections, the values of concrete

strains at the top and the bottom of the section are

calculated assuming that the concrete stress-strain curve

is linear in compression and that the tensile stresses in

concrete are negligible. The considerations used for this

purpose are given in Appendix I.

(f) Using the strains obtained above, each of the

m sections is classified as either Case 1 (Fig. 2.5b),

Case 2 (Fig. 2.5c) or Case 3 (Fig. 2.5d). Governing

equations (2.26) and (2.27), (2.28) and (2.29) or (2.30)

and (2.31) are chosen for each section in accordance with
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the above classification. The first two pairs of the

equations can be solved by the ,Newton-Raphson iteration'

method(1 2 ). (If M is negative the terms e Iand e 4 are

interchanged and the same equations are employed along

with the absolute value of M.) This method as applied to

the present problem is explained in Appendix II. The

strain values obtained in step (e) are used as initial values

to start the iterations. The last pair of equations being

linear, the strains obtained in step (e) satisfy these

equations. Thus the solution of the proper pair of

equations gives strains e 4 and e. for all the m sections.

(g) Using the concrete strains e4 and el, the

steel strains e3 and e 2are obtained. If le31 or le 2 1

or both are greater than leJi , the governing force-strain

relations are altered as explained in 2.3.1c and the

nonlinear equations are once again solved by the 'Newton-

Raphson iteration' method. The initial values for starting

the iterations are the solutions obtained in step (f).

The values of e and e1 thus obtained take into account the

yielding of steel.

(h) The quantities e. and 7X are obtained using

equations (2.25) for all the m sections.

(i) Using equations (2.3 8 a) through (2.3Bf),
1, UP, W-(i = i,...,m) and I (i = 2,...,m) are

evaluated in terms of one unknown viz. W . Since, in thet

first trial, values of Ui A and Wi's are not known,

-32-



eoi 7s in equation (2.38a) are assumed to be equal to e01 's.

This amounts to neglecting the n,'.inear terms in the strain-

displacement relations for this cycle of trial 1. Ecuations

(2.39) and (2.40) are now written for (m-l) sections to

obtain a set of (2m-2) equations involving (2m+l) unknowns

viz. m UI's, Wi's and W1. From equation (2.32)
1

we know that U = W = Ur = 0. Thus the unknowns are reduced
1 1

to (2m-2). On solving these equations simultaneously the

values of deflections U and W are obtained for all the

m sections.

(J) Making use of equations (2.33) and (2.38a)

( .d ) is, (j =1,..., m-2) and ;,i (i = 1,..., m) are calcu-

lated and steps (d) through (i) are repeated using the

newly calcualted values of ( AckQ)j, and 90j. The deflec-

tions U's and Wts thus calculated include large deflection

effects. These deflections are found to be satisfactory and

a second repetition of this step is not needed.

Trial 2 -

(a) If the value of W. obtained in Trial 1 - (J),

does not satisfy the condition Wm - 0 (equation 2.32)*,

*In the present method a tolerance of ( - 1/500 inch Kwm <

1/500 inch) is considered to be satisfactory.
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the assumed value H is changed by a small percentageBI

to a new value ý-k W

(b) Steps (c) through (J) of Trial 1 are now

repeated, the only difference being that the values of

(Ad9) in step (d) [equation (2.33)3 and those of eoi

in step (i) [equation (2.3 8 a)j are obtained by using the

values of UIts and Wi's calculated in step (J) of trial 1.

(c) If the' most recent value of W. O, the

value of H is modified once again. The new value " 1

is obtained by extrapolating linearly on the basis of ka\),

0 and the deflections W' is associated with each

respectively.

Using H.., steps (c) through (J) of

Trial 1 are repeated and the deflection Wim is checked.

This procedure is continued until the deflection

falls within the tolerance limits.

2.3.5 Calculation of Ultimate Load:

The ultimate load carrying capacity of an arch

for a particular distribution of loading can be obtained

by using the method described in the previous article. The

procedure consists of analysing the arch for Increasing

values of load until the ultimate is obtained. The ultimate

load is assumed as that which causes the maximum compressive
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strain in the arch to exceed eu, the ultimate concrete

strain, (S• 2.1.3).

2.3.6 Digital Computer Program:

A computer program prepared to handle the extensive

calculations involved in obtaining a numerical solution by

the above method is presented in Appendix III. The program

consists of a main routine and six subroutines. The flow-

chart of the program is also presented in Appendix III.

2.3.7 Convergence:

a) Number of Discrete Segments:

Semicircular arches were divided into 16, 20,

24 and 28 segments and analysed for various load distri-

butions. It was found that the results obtained from the

last three cases were essentially similar and a choice of

20 segments (each subtending an angle of 90 at the center

of the arch) was made to approximate a semicircular arch.

b) Convergence of Iterations:

In the numerical method described in S2,ý.4,

two different iterative procedures are used. The first one

concerns the solutions by means of 'Newton-Raphson iterationt

[steps (f) and (g) of Trial 1]. Certain difficulties ex-

perienced in obtaining convergence with thisý iteration have

been explained in Appendix II ( SA2.3).

The second iteration involves successive choice

of the horizontal reaction until sufficient convergence is

-35-



obtained in as few as four to six cycles of iteration.

However, for certain load distributions, as the load

approaches the ultimate small changes in the assumed value

of the redundant cause large changes in displacement and

it becomes difficult to obtain the convergence. Consider,

for example, a semicircular arch under the action of a

uniformly distributed antisymmetrical loading (Fig. 2. 8 a).

Load! i'-'Cý%

(•) (~b)

Figure 2.8 Semicircular Arch under a Uniform

Antisymmetrical Load

For points below ' on the load-deflection

curve in Fig. 2.8b the convergence is satisfactory. When

the load is increased to that at point X, the combination

of moment M and thrust N for a certain trial value of the



horizontal reaction say H i, causes the maximum compressive

strain at sections K and L (quarter points) to exceed eI.

That is, the strains in many fibres at these sections

correspond to the drooping part of the concrete stress-

strain curve. With such large strains, the change in

curvature at the sections K and L is large and its con-

tribution to the end deflection Wm is large. As the value

of the horizontal reaction is changed, the moments and the

thrusts on the sections change. These changes, though

small, may be sufficient to cause a change in the strain

distribution at either K or L or both, such that the

maximum compressive strain is less that el. Such a drasticc

change in strains can occur because the concrete stress-

strain curve has been assumed to be parabolic with a

drooping part, the slope of which increases very rapidly.

The net effect of this large change in the strains at

K or L is to affect the curvature at these points con-

siderably and consequently to change the end deflection

Wm by a large amount. On account of such a sensitivity of

the deflection Wm to the changes in the value of the

redundant, the solution tends to oscillate or even

diverge. However, it is seen from Fig. 2.8b that such
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a difficulty in convergence occurs only in the vicinity of

X, where the load-deflection curve is almost horizontal.

Therefore, it is reasonable to take the load at X as

the ultimate load of the arch, and a good convergence

is not necessary. The method thus yields a close

approximation of the value of the ultimate load, but

is unable to predict the load-deflection curve beyond X.

2.4 DYNAMIC RESPONSE

2.4.1 Governing Equations:

The forces actiag on an element of the arch

deformed under the action of time-dependant loads are

shown in Fig. 2.9. In addition to the external loads

and the internal forces, radial and tangential inertia

forces are shown to act on the element. The rotational

inertia has been neglected. The geometry of deforma-

tion of the arch element is similar to that in the

static case (Fig. 2.4). Also, the force-strain

relation now depend on the dynamic stress-strain

properties of both concrete and steel.

a) Equations of Equilibrium: By con-

sidering the equilibrium of forces in r and G directions

and the moment equilibrium, the following equations of

dynamic equilibrium of the arch element are obtained:
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Figure 2.9 Dynamic Forces Acting

on a

Deformed Element
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- 1  tr0de__u =A (2.4 2)

oe o 4

where, in addition to the notations used in j 2.3.1, the

density of reinforced concrete is denoted by /* and the time

by t.

b) Strain-displacement Relations: Since

the geometry of the deformed element is similar to the

one in the static case, the strain-displacement relations

are similar to equations (2.9) and(2.10) except that the

total derivatives are replaced by partial derivatives:

eo _w .ri w -•; .u
e =-- w- ( - w(2.4A)

r0 
0 -

S0-
2

Ci t a% (2.4S)~

r

Also equation (d) of J2.3°lb becomes

AcdO =Cie
r ~
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c) Force-strain Relations: The force-

strain relations also are similar to those in the static

case except that the dynamic properties of both concrete

and steel are to be used. That is, in equations (2.11)

through (2.17) f" and e' are to be replaced by f" and
c c dc

eAc respectively. The dynamic force-strain relations are

given in a nondimensional form in S 2.4.2.

d) Boundary Conditions- The boundary

conditions governing the dynamic case are the same as in

the static case, viz.

At E = 0 and G = 2

u = w = M = 0 (2.47a)

e) Initial Conditions: The initial

conditions specify that the arch be undeformed at the

start of the response, i.e. at time t = 0,

u = w = M = N = Q = 0 everywhere on the arch (2.47b)

2.4.2 Nondimensionalization of the Equations:

For the purpose of converting the governing

equations into nondimensional form, the following notation

is used in addition to that defined in §2.3.2 [equations

(2.19)],

-II
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where T = Natural period of the arch.

Hence, the nondimensional governing equations are,

EcIUQ Ion s of' eqiirLiu

- •t) + cos C-Ao)]

0 1ot(( A0G) - % (Ado)i •-!

T "
C

cb osec (, P +~ 2±b Sn(d) - cos.(Ada)j

6 o (416 CA LO de)S + S;" O ~r-L 2-

' I3
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Strain-displacement relations:

e0 ~W _U W , __) (2.5-2)

o +

W (2.S3)

a•,o A,:e = •__.W dg( .s4)

0

Force-strain relations:

As stated earlier, the force-strain relations are

obtained by the substitution of f"d and ea in place of
dc dcenpaeo

f" and e' respectively in equations (2.11) through (2.17).
C C

The form of equation (2.11) is altered to suit the numerical

method described in 2.4.4. Thus, the force-strain relations

are,

t

and e =e -+
2 r

0
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In dases 1 and 2, the steel strain e2 or

e. is replaced by edy when either the bottom or the

top steel yields. However, in Case 3, both the tensile

strains -e2 and -e . need to be below the tensile

yield strain -e in order to satisfy equations (2.60)

and (2.61) simultaneously.

The boundary conditions in nondimensional

form are,

At 6 = 0 and 0 = 2

U = W = 0 (2. 6 2a)

The initial conditions are,

at O = 0, U = W M N Q = 0 everywhere on the arch

(2.62b)

2.4.3 Finite-difference Formulation:

In order to solve the governing equations

using numerical techniques, the differential equations

(2.49) through (2.54) are converted into difference
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equations, suitable for the method presented in 2.4.4.

The formulation of the difference equations is accomplished

by using a discrete system shown in Fig. 2.6. The notation

followed in 12.3.3 denoting the discrete sections by

i-1, i, i~l etc., and the discrete segments by j-l, j,

J+l etc., is also used in the present case. In addition,

successive time intervals are denoted by k-1, k, k+l etc.

Therefore, each unknown carries two subscripts -

either subscript i or j depending upon whether the

unknown pertains to a section or to a segment and the

subscript k specifying the time interval.

The difference equations obtained are as

follows:

Using forward differences, equation (2.54)

becomes,

• W. k •W. *W
(Aae) = (w )k

Jk
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By using central differences for sections

away from the boundaries and forward differences for

boundary sections, equations (2.52) and (2.53) become,

e . = -

o ;-jk i. (W.0

(W~k~W. J - Ih,
6 A50 0

2.

e' - _ x2v.

Um-ik + 2- . k

Ck 0

0 0

(Wi 4. Wt- 2 -U (
k (' 'I) III I VI)

00

L=.) -)

w
e + 20L 2

e~ A&

048



Using the notation defined by equation (2.37),

equations (2.49), (2.50) and (2.51) are converted into

difference equations. The quantities N and Q are sub-

stituted by their average values at sections i and i4-1,

while forward differences are used in place of the derivatives

of N, Q and M,. The difference equations are,

I,

C GC W T +c~ -NC *bN~?~ ~
Sk L~k K i41+k 3

C - TD6 -C C -ý- N + )
11) k L+Ik S 3

k i

6 
Le

TT -
-2..

2C

WT. W

7•t
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2.4.4 Numerical Method of Solution:

The solution is started out from the specified

initial conditions and then information is obtained at

successive time intervals, At apart. The method is as

follows:

(a) The arch is divided in (m-i) segments as

shown in Fig. 2v6. The ordinates of the radial and tangential

components of the load pulse acting on each segment are computed

at time intervals 6,t apart so that the values of loads at

discrete times to, tI, ... , tk are known as shown in

Fig. 2.10a or 2.1lb. These load values are nondimension-

alized. The natural period, T is calculated as follows(1 3 )

Compression mode

r,

T =

1800

where T is in seconds

and r is in feet.
0

Flexural mode

X 22

where T is in seconds

and r. and d are in inches.
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Figure 2.10 Lodd-Time Curves

(b) Starting with the undeformed arch

equation (2.62b) at time to, the solution for the

response is launched by using the 'Acceleration-pulse'

method(ll). In this method the following formulae are

used for extrapolating the displacements W i,k and

Uiok of a secion i(i = 2,3,...,m-1) at time tk

(k = 2,3,...).

W. 2- W. W. -A- (WI) (At (2.66)
L k-25 1
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c~~c U =2- U. - + CUT"). (t
k- L k-l

where a &- the nondimensional time interval.

At time t1 , for any section i (i = 2,3,...,

m-i) the following two types of extrapolation formulae

are used.

(1) If the load-time curve is as

shown in Fig. 2.10a,

•J WT ) (At) C.7&
tjl %L'O • 2-70 a

•a U = ± CUT"). (-2}.

(2) If the load-time curve is as

shown in Fig. 2.10b,

"W T
-2(2-7o)

aI n I T I Il
L) i



In cases when equations (2.70b) are used, an

itqration on the values of both (WT")iI and (UT")i,I

becomes necessary.

(c) At time to, equation (2.62b)

indicates that

U W. = M -N. -Q
I,0 L. 0o i0 LQO L O

Using load Prjo' P j, a~nd equilibrium equations (2.66),

(2.67) and (2.68), the values of (WT")o and M") o1o

(j = 1,..., m-l - segments) are obtained. Also,

approximating the radial and tangential accelerations of

section i by the average of the corresponding acceler-

ations of segments J-1 and J,

(W T). WT • +(WT "x

a•,d CU T U T + CUT,,

where (i 2,3,..., m-l),

the values of (WT")io and (UT")io are obtained.
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(d) At time t1 = to+At,

(i) Using either equations (2.70a) or

(2.70b)." as need be, values of Wi, 1 and Ui,1

(i = 2,..., m-i) are obtained. The boundary conditions

[equation (2.62a)] require that,

W 1 ,1  UII 1 I,1 = WInm, = UI = Ml = 0

(ii) Using equations (2.63), (2.64) and

2.65), values of e. ,1 and ( i = 1,...,m) and

Ade) (j I,. m-1) are obtained.

(iii) For each section i, equations (2.55a)

and (2.55b) are employed to obtain concrete strains e,

e4 and steel strains e 2 , e3.

•When equations (2.70b) are used, the values of (WTt")i,1

and (UT")iI (i = 1,...,m) are not available. Hence,

certain reasonable values are assumed; at first operations

(i) through (vii) are performed and values obtained in

step(vii) are compared with the assumed values. If the

agreement between them is not satisfactory, the newly

obtained values of (WTf)i , and (UT")i, 1 are employed in

step (i) and steps (i) through. (vii) are repeated. This

process is continued until a satisfactory agreement between

the values used in step (i) and those obtained in step

(vii) is gchieved.



(iv) Based on the values of e and e4,

each section is classified as Case 1 [equations (2.56),

(2.57)3, Case 2 [equations (2.58), (2.59)3 or Case 3

[equations (2.60), (2.61)]. Also, strains e2 and e.

for each section i, are compared with the yield strain of

steel edy and are replaced by edy (with proper sign)

if found to be greater than e in magnitude.

(v) Making use of the equations (2.56),

(2.57) or (2.58),(2.59) or (2.60), (2.61) values of

Ni.1 and Rill (i =l,...,m) are obtained.

(vi) Loads Prj,l' PJ,I and (Ad9).

calculated in step (ii), (j =1,...., n-i) and equations

(2.66), (2.67), (2.68) are used to calculate (WT"),il,

(UTI (j = .,-l) and Qi'l (i =,...,m). For

the (m-i) segments, (3m-3) equations are now available

while the unknowns form a total of (3m-2), i.e., (m) Qs,

(m-i) WTVs and (m-l) UT"s. In order to overcome this

difficulty, it is assumed that

(WT"),I 1 = 0 where j = 1 and m-i

This assumption implies that the radial accelerations of

segments nearest to the two supports are, neglected. This
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leaves (3m-4) quantities as unknown. Excluding equation (2.66)

as applied to segment (m-i), a total of (3m-4) equations are

available. Solving these equations, values of (WT") j,il,

(UT") il (j " 2,...,m-2) and qill (i = l,...,m) are obtained.

However, in the case of uniformly distributed symme-

trical loading, making use of the fact that the shear Q at

the crown is zero, equations (2.66), (2.67) and (2.68) are

simultaneously solved for half the arch. The solutions of

of these equations yield the values of (WT"), (UT") and I

for one-half of the arch: the corresponding values for the

other half are obtained by using symmetry.

(vii) Finally, using equations (2.71) for k = I,

values of (WT")i, 1 and (UT")i,1 (i = 2,...,m-l-sections) are

obtained.

At the end of step (vii) all the information regarding

the internal forces M, N and Q, the radial and tangential dis-

placements W and U, and the corresponding accelerations WT"

and UT" is available at time t for all the m sections.

(e) At each successive time t , t ,... tk the seven
2 3

steps of (d) are used to obtain all the information about the

arch at the discrete sections, the only difference being that

in step (i) equations (2.69) are used to calculate displace-

ments W ik an-d Uilk (i = 2,..., m-l - sections).

The steps (a) through (e) thus give the response

of the arch to a time-dependent load.

2.4.5 Calculation of Ultimate Load:

The ultimate load of an arch is once again
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leaves (3m-4) quantities as unknown. Excluding equation (2.66)

as applied to segment (m-1), a total of (3m-4) equations are

available. Solving these equations, values of (WT"),i,

(UT",I (j " 2,...,m-2) and il (i = 1,...,m) are obtained.

However, in the case of uniformly distributed symme-

trical loading, making use of the fact that the shear Q at

the crown is zero, equations (2.66), (2.67) and (2.68) are

simultaneously solved for half the arch. The solutions of

of these equations yield the values of (WT"), (UT") and Q

for one-half of the arch: the corresponding values for the

other half are obtained by using symmetry.

(vii) Finally, using equations (2.71) for k = 1,

values of (WT")i, 1 and (UT")iI (i = 2,...,m-l-sections) are

obtained.

At the end of step (vii) all the information regarding

the internal forces M, N and Q, the radial and tangential dis-

placements W and U, and the corresponding accelerations WT"

and UT" is available at time t for all the m sections.

(e) At each successive time t , t ,... tk the sevena a

steps of (d) are used to obtain all the information about the

arch at the discrete sections, the only difference being that

in step (i) equations (2.69) are used to calculate displace-

ments Wik an-d Ui,k (i = 2,..., m-i - sections).

The steps (a) through (e) thus give the response

of the arch to a time-dependent load.

2.4.5 Calculation of Ultimate Load:

The ultimate load of an arch is once again
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defined to be that load under which the maximum compressive

strain in concrete exceeds the ultimate strain eu. There-

fore, as explained in §2.3.5, this method gives ultimate

loads for certain distributions of loading such as

(a) uniformly distributed symmetrical loads, (b) uniformly

distributed antisymmetrical loads, and (c) symmetrical and

antisymmetrical concentrated loads, except a concentrated

load at the crown.

For a given distribution of loading and for a

given load pulse such as the one shown in Fig. 2.10b

(defining tr, tf and td) the ultimate load is obtained

as follows:

(1) Starting at a low value of the peak load

p the arch is analysed at discrete times tol tl,...,tk

using the procedure outlined in §2.4.4. At each time the

maximum Value of the concrete compressive strain is compared

with the concrete ultimate strain to check for failure.

The analysis is continued either until tk = td (if td> T)

or until tk = T (if td < T). Since the maximum response

of the arch occurs at a time tm < T (usually tm - 0.5T to

0.75T)(ll), the analysis of the arch upto tk > T is

sufficient for investigation of the possibility of failure

under the load p
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(2) The peak load p is increased by

a certain percentage and the analysis as explained in

step (1) is repeated.

(3) This process of increasing the

peak load p and analysing the arch is continued until

the ultimate strain e is exceeded. The value of p
U k

at which this excessive strain is produced is the ultimate

load of the arch for a given distribution of loading and

a given load-time dependence.

2.4.6 Digital Computer Program:

A digital computer program prepared to perform

the calculations involved in the methods outlined in

articles 2.4.4 and 2.4.5 is presented in Appendix IV.

A flow-chart of the program is also presented in

Appendix IV.

2.4.7 Selection of Space and Time Intervals:

Before the numerical method presented in

2.4.4 can be used, it is necessary to determine the

approximate values for the parameters Ne and Lt used

for discretization of the continuous system. As in J2.3.7.

again a semicircular arch is divided into 20 segments so

that &9 is equal to nine degrees.
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In order to establish the time interval At,

information regarding the problem of wave propogation in

a one dimensional elastic system proves to be useful.

Crandall( 1 4)has shown that in a one dimensional elastic

system, the time interval Akt is related to the ratio of

the space interval AX and the seismic velocity, Cs in

the medium. This relation says that for the stability

of the numerical method of solution,

AtA

Crandall has also suggested that if Ltt is much smaller

than 1s , the accuracy of the numerical method

deteriorates.

0

Semicircular arches of Type A (refer to § 3.3) under

different distributions of loading with different load-

time functions have been analysed. It is found (Fig. 2.11)
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that for At or , the convergence is
C K -

adequate and satisfactory deflection-time curves are

obtained. However, for At•>--the deflection-time
CS

curves show erroneous trends. Therefore, for all the

dynamic cases the criterion Lt=-L is used, permitting
CS

the use of the largest time interval without causing numer-

ical instability.

2.5 CONVENTIONAL THEORY FOR PREDICTING ULTIMATE LOADS

AND DEFLECTIONS'

In this section a brief review is given of the con-

ventional methods of predicting the ultimate loads of

arches under(l) uniformly distributed symmetric radial

load, (2) concentrated load at the crown and (3) anti-

symmetric loads at the quarter points. The expressions

for deflection at the points where the deflections are

measured in tests (refer section 3.4.2 (c) in following

chapter), are also given. The initial tangent modulus of

concrete is to be used in these expressions. The expressions

for deflections are derived by assuming linearly elastic

material, using the usual virtual work approach.

2.-.1 Uniformly Distributed Symmetric Radial Load:

(a) Ultimate Load: If the secondary bending

effects are neglected, the ultimate load is given by the
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following expression.

(0 (2.74)
U 'Y

TH 0

where t = Total depth of arch in inches

ro = Radius of arch in inches

b = Width of arch in inches

PUTH = Ultimate load in lbs/inch A + A

s s

Pt = Total steel percentage = bt

(b) Deflection: The radial deflections of the arch

at crown and at points 54' from the supports are given by

the following expressions.

W =•.C36 TH o (•_.5)
C AE

w - ~21.20 TH (2-/)
01 A r

where A = Ac [1 + (n-l) pt]

E = (1800000 + 390 f') in

PTH = Distributed load in lbs/inch

Ac = Area of concrete section in sq. inches

n = Modular ratio = Es = 10 (assumed)
E

w =:;-Radial deflection at the crown in inchesc

w = Radial deflection at 540 points

q
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2.5.2 Concentrated Load at Crown:

(a) Ultimate Load: The ultimate load of the

arch under concentrated load can be calculated by using the

conventional plastic theory as the test specimens of the

test program are underreinforced. It can be shown that

the arch will collapse with the formation of three hinges,

one at the crown and two others at 38' from the supports.

It is not easy to derive an explicit formula for the

ultimate load because the effeob of thrust on the moment

capacity of the section has to be considered. An iterative

procedure described below can be used.

In the first cycle, the ultimate load can

be calculated by using equilibrium conditions and neglecting

the effect of thrust. Two unknowns - horizontal reaction H

and ultimate load Pu can be found by using the conditions

that the moments at two hinges should be the ultimate moment

Mu, which is given by

wke•'e Q,

(0.85 f

Once this ultimate load is calculated, it can be used to

calculate the thrust at the crown and at the 380 points.

With these values of thrusts, new values of moment capacities
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at crown and at 38' points can be found from the graph

of P/Pu vs. M/Mu. (See for example Fig. 5A - 10.2,

Reference No. 13, in bibliography.) With these values of

moment capacities a second cycle of iteration will give

"a new value of H and P . This process can be repeated untilu

"a satisfactory convergence is obtained. Usually two or

three cycles should give satisfactory results.

(b) Deflection: The expression for the

radial deflection at crown is as follows.

e r
W I V 0 .')

C AV

where IAV = Average of the moments of inertia of

the cracked and uncracked sections in in.•

E = (1800000 + 390 fl) in psi
c c

PTH = Concentrated load at crown in pounds.

w = Radial deflection at crown in inches.c

It is uncertain as to what value of the

moment of inertia of reinforced concrete section should be

used. However, as recommended in references 11 (Section 2.6)

and 19 in bibliography, it is decided to use an average

of the moments of inertia of the cracked and uncracked

sections (i.e., IAV).
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2-5-3 Antisymmetric Concentrated Loads at Quarter

Points:

(a) Ultimate Load: The ultimate load in this

case can be calculated also by using plastic theory. Under

this type of loading it can be shown that the arch collapses

by the formation of two hinges, one at each quarter point.

To take into account the effect of thrust on the moment

capacity of the section, the following iterative procedure

can be used.

In the first cycle of iteration, if

the effect of thrust is neglected, the ultimate load Pu
is given by

P = LA C2-Y9)U
V,0

wh e re A f (d - a12.)
U

Cknd (x
0.85 f'bC

With this value of ultimate load, thrust

at two quarter points can be calculated. These thrust

values can be used to determine the new jalues of moment
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deflection is calculated by using formulae presented

in § 2.5 and the analytically predicted ultimate load.

The experimental value of )u is calculated by using the

value of the maximum deflection under the ultimate load

measured as described in § 3.4.2 (c) and the elastic

deflection obtained by using again the formulae given in

§ 2.5 and the experimentally determined ultimate load.

2.7 COMPARISON OF DYNAMIC ULTIMATE LOADS - NONLINEAR

THEORY AND APPROXIMATE THEORETICAL ANALYSIS

The nonlinear theory developed so far is used to

obtain ultimate loads of arches under a triangular

dynamic load pulse with zero rise time (Fig. 2.12).

The distributions of loading along the arch are

a) Compression mode type

and b) Deflection mode type

The geometry and material properties of the arches

is as follows:

bI=lol t = 15 " ro = 300"1

S0 = 90 ' Pt = 0.025 d = 13.5"

ft = 4000 psi, fd = 400,000 psi,

do

Es = 30 x l06 psi
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Figure 2.12 Triangular Load Pulse

Various values of the ultimate loads, pm are obtained

for different duration of loading tj, with both types

of distributions.

Approximate analysis based on a single-degree

freedom system is also conducted for the same arches.

The following formulae(13), (19) are used for this

purpose:

Compression mode loading -

Pm = r c 2+U_+ T 2 .-p - 1) O ".

1 2+ T T t (

where Pm = Dynamic load (lbs/in)

re = (0.85 f' + Pt fdy) bt (lbs/in)
ro

T = Natural. period of the arch in compression

mode (milliseconds)
ro

21.6

ro= Mean radius of the arch (inches)
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a =Ductility factor

Here, PM is calculated for two values of )U, viz.

,u = 1.3 and 2, and various values of tl.

Deflection mode loading
-l 1

2 _U + ( 2 0 .5)

f +2-At
T tI1

where r 7.2 p fdy
f r ) 2

As
p

bd

T Natural period of the arch in flexural

mode (milliseconds)

( o o)2 F (2/ A)2 + 1.5

425 d Jp 0 2_

Here various values of t1 and two values of )a,

vix. )a = 2 and 5 are used for calculating Pm.

The analytical results obtained from the nonlinear

theory are compared with results obtained from the approx-

imate analysis (20). This comparison is shown in Fig. 2.13.

There is a good agreement between these results when the

duration of loading tI is greater than about half the
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natural period, T. However, the approximate analysis

seems to give unconservative results for tI less than

about 0.5 T. A possible explanation for such results

may lie in the fact that under loads of short duration,

more than one mode of vibration are excited and analysis

based on a single-degree freedom system becomes inadequate.
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CHAPTER 3

EXPERIMENTAL INVESTIGATION

3.1 TEST SPECIMENS

All test specimens are reinforced concrete, semi-

circular arches of radius 18" and of rectangular cross-

section. For the purpose of these tests,. two sizes, one

with a cross-section of 2" x 2" and the other with a

cross-section of 1" x 2" were chosen. The purpose of

choosing two sizes was to detect if possiblethe in-

fluence of the natural period on the dynamic response of

the arch for a given rise time of the dynamic load. The

details of the geometry, cross-section and reinforaement

of the arches are shown in Table 3.1 and Figs. 3.1 and 3.2.

The specimens with 2" x 2" cross-section are designated

as Type A, and those with 1" x 2", as Type B.

TABLE 3.1

I IA A'Specimen Cross- Reinforcement s s
Type section I (sq.in.) (sq.in.)

A 2" deep x 4 #7 wires 0G.0492 0.0492
2" wide (diameter = 0.177")

B 1" deep x 4 #12 wires 0.0173 0.0173
2 wide (diameter = 0.105"
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Suitable wooden forms were used to cast the specimens. (Fig.3.3)

A simple device as shown in Fig. 3.4 was used to make the

reinforcement cages. The wires were first bent to the

required radius in a wire bending machine, and then

inserted into the device mentioned above. Stirrups were

tied at predetermined spacing.

The concrete was mixed for 2 to 3 minutes in a nine

cubic feet capacity tilting drum type mixer. The specimens

were left in the formwork for about 48 hours, after which

they were removed from the forms and cured in the air of

the laboratory until tested. With each specimen, three

6" x 12" control cylinders were also cast and cured under

the same conditions. These control cylinders were used

to determine the ultimate compressive strength f of thec

concrete, at the time the specimen was tested.

3.2 MATERIAL PROPERTIES

3.2.1 Concrete:

The concrete mix was designed for an f c of

3000 psi at seven days. The proportions by weight of the

cement, sand, gravel and water were as follows:

1 part by weight of high early portland
cement,

2.64 part by weight of sand,

2.10 part by weight of coarse aggregate,

7.25 ghllons of water per sack of cement.
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With these proportions it was expected to obtain

fl equal to 3000 psi at seven days. However, for some test
c

specimens, the actual f' obtained from the test cylinders

was higher because it was not possible to test the specimens

exactly at seven days. In some cases, specimens were tested

after as much as thirty days, due to unexpected delays. The

actual value of f' of each specimen is given in Chapter 4.
c

The sand used had a fineness modulus of about 2.5.

The maximum aggregate size for Type A specimens was 3/8",

while for Type B specimens 3/16".

3.2.2 Steel:

Black annealed mild steel wires were used as

the reinforcement. For Type A specimens, #7 wires (diameter =

0.177") were used, while for Type B Specimens #12 wires

(diameter = 0.105") were used. The strength properties of

these wires were as follows:

(a) #7 Wires:

Static yielu stress fy = 49 ksi

Static ultimate stress fu = 51 ksi

Modulus of elasticity Es.= 34.1 x l03 ksi

The stress-strain curve of this wire is given

in Fig. 3.5.
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(b) #12 Wires:

Static yield stress fy = 40 ksi

Static ultimate stress fu = 49.5 ksi

Modulus of elasticity Es = 31.6 x lO ksi

The stress-strain curve of this wire is given

in Fig. 3.6.

3.3 LOADING CONDITIONS

In this test program, static and dynamic tests were

conducted for the following three types of loading conditions.

Type I - Uniformly distributed symmetric radial load:

This was simulated by ten point loads,

spaced at equal intervals on the periphery of

the arch as shown in Fig. 3.7. Each interval

subtends an angle of 180 at the center.

Type II - Concentrated load at the crown of the arch.

Type III- Antisymmetric concentrated loads at quarter

points on the arch.

These three loading conditions are shown in Fig. 3.7.

3.4 EXPERIMENTAL SET UP

3.4.1 Modification of the Existing Loading Machine:

The dynamic loading machine(18), constructed

by the Department of Civil Engineering, M.I.T., under the

contract DA-49-129-ENG-325, had to be modified to suit
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the loading conditions described in section 3.3. With the

earlier version of the machine it was possible only to apply

a single point load on the test specimen. The modification

essentially consisted of mounting ten jacks on a suitable

frame, and in connecting these jacks through rubber hoses

to the auxiliary oil reservoirs. In what follows, a short

description of loading jacks, rubber hoses, oil reservoirs

and the details of their connection with the previously

existing apparatus is given. For a detailed description of

the components of the original machine and the principal

of its operation,reference is made to

(a) Loading Jacks: The preliminary estimate of

the dynamic resistance of the Type A arch specimens showed

that the failure load under compression mode loading (i.e.,

Type I loading condition) would be about 6.5 to 7 kips per

Jack. Therefore, it was decided to design the loading Jacks

to develop a load of 12 kips at the maximum working oil

pressure of 4000 psi. The details of design were based

on considerations similar to those given in reference (18)

(Chap. V, Art c). It was found that Hannifin Series "H"

square type hydraulic cylinders (manufactured by Haniffin

Company, Des Plaines, Illinois) with the following re-

quirements, were suitable for the purpose and accordingly

adopted.
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1. Bore diameter = 211
2

2. Piston rod diameter = I4"

3. Stroke = 4"1

4. Maximum Working Pressure = 4000 psi

These jacks are double acting - double rod end, with cushions

on both ends of the jack.

(b) Reservoir: In the modified loading system,

two reservoirs are used. One of them is interposed between

the pump and the push side of the loading jacks while the

other is placed between the pull side of the jacks and the

dump valve of the original dynamic loading machine. These

reservoirs are in the form of cylindrical containers with

a sufficient number of outlets which can be connected to

the jacks. These reservoirs are shown in Figs. 3.8 and

3.9. Various details, such as the diameter of cylindrical

container, number of outlets, etc., are also marked in

Figs. 3.8 and 3.9. The reservoirs are designed to with-

stand an oil pressure of 5000 psi. The main purpose of

these reservoirs is to provide the means of supplying oil

to all the jacks at the same pressure so that the jacks

can develop equal loads.

(c) Rubber Hoses: In order to have the flexibility

in connections between the reservoirs and the jacks, rubber

hoses were used instead of metal tubing. These hoses are

3 wire braid high pressure hoses (working pressure = 5000 psi,
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1"!

and bursting pressure = 20,000 psi) with internal diameter.

(d) Hydraulic Connection: The hydraulic cornec-

tions between various components of the loading system

are shown in Fig. 3.10.

The main cylinder of the machine is connec-

ted to the push side reservoir which in turn is connected

to the push side of the jacks. The main dump valve is

connected to the pull side reservoir which in turn is

connected to the pull side of the jacks. Heavy duty steel

pipes are used for connecting the main cylinder with the

push side reservoir and the dump valve with the pull side

reservoir. Connections between the reservoirs and the

loading jacks are through high pressure rubber hoses as

already mentioned.

The pull and push side reservoirs are inter-
311

connected by - tubing so that equal pressure can be built

up and maintained initially on the pull and push side of

the jack. A needle valve is placed in this line, so that

by closing the valve, the two reservoirs can be discon-

nected before dumping the pull side reservoir through the

dump valve.

(e) Frame: The structural frame in which the

jacks and the specimen are mounted, consists of WF I
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sections. Fig. 3.11 &aows this frame with ten jacks

mounted for Type I loading. For Type II loading,only

one jack is mounted at the proper place on the frame as

shown in Fig. 3.12. Two jacks are mounted on the frame as

shown in Fig. 3.13 for Type III loading. In order to ensure

that the applied load remains radial, as the arch deforms

under load, the jacks are mounted so as to allow them to

rotate with the arch, This is done by using pin connections

between the jacks and the frame and between jacks and the

specimen.

The pinned supports for the test specimen is

simulated by using specially fabricated devices as shown

in Figs. 3.14, 3.15, 3.16 and 3.17.

3.4.2 Instrumentation and Measurements:

In order to study the behavior of the test

specimens, it is necessary to measure the following

quantities:

(a) Applied Loads,

(b) Reactions,

(c) Radial deflection at crown and at I points,
4

(d) Natural frequency of the test specimens.
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(a) Applied Loads: The applied loads were

measured by mounting suitable load cells on the piston rod

of the jacks. The range of failure loads between type A

specimens under compression mode loading (Type I) and

type B specimens under deflection mode loading (Type III)

was quite large. Type A specimen under compression mode

had an estimated failure load of about 7000 lbs. per Jack,

while the estimated failure load for type B specimen under

deflection mode was as low as 100 lbs. per Jack. Therefore

three different types of load cells had to be made for each

of the three load types. These load cells are shown in

Fig. 3.18.

Load cells for Type I and Type II loadings were

essentially hollow circular aluminum rods on which are

mounted eight C-7 strain gages (4 active gages and 4 dummy

gages, resistance of each gage = 500 ohms). Load cells

for Type III loading were in the form of a u-shaped

aluminum frame on the vertical sides of which are mounted

eight C-7 strain gages. These strain gages are connected

to form a suitable wheatstone bridge circuit. The signal

from this strain gage bridge was fed into an eighteen

channel recording oscillograph, Type 5-114-P3, manufactured

by the Consolidated Electrodynamics Company. (Hereafter

in this report this equipment will be referred to as the

C. E. C. recorder). The traces of the galvanometers
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of the C.E.C. recorder were recorded on photographic paper

in both dynamic and static tests.

Initially a few pilot tests were made on

type 'IA" specimens under Type I loading and in these tests

all ten jack loads were measured to determine whether the

loads developed by all Jacks were equal or not. These

pilot tests did confirm that the loads were equal and as

a consequence, it was decided to measure only five jack

loads during the tests.

(b) Reactions: Vertical and horizontal reactions

were measured by the load cells As shown in Fig, 3,14. Again

for the reasons mentioned above (article 3.4.2 (a)] various

types of load cells had to be made. These load cells are

in the form of solid or hollow aluminum rods of suitable

diameter, with square aluminum plates at their ends. These

load cells were useful for measuring relatively large re-

actions. The ring type load cells which essentially con-

sisted of an aluminum ring between two square plates were

used to measure relatively small reactions. Eight C-7

strain gages were mounted at suitable places on these load

cells as shown in Fig. 3.19. The gages were connected

to form a suitable wheatstone bridge circuit. The output

of the load cell was measured by the C.E.g. recorder in

both static and dynamic tests.

-81ý



The power to all the load cells was

supplied by a Sorenson Transisterized D.C. Power Supply

(Model No. QR-36-L•A). The range of output voltage and

output current of this power supply unit is 0 - 36 volts

and 0 - 4. amps, respectively, with a % regulation of

0.02.

(c) Measurement of Deflections: In all tests,

radial deflections of the test specimen were measured at

the following points.

For Type I loading, radial deflections

were measured at the crown and at the points 54 degrees

from the supports (Fig. 3.20). Deflections were measured

at these 54' points rather than at the quarter points

because it was difficult to attach the deflection measuring

device at the latter due to the presence of the loading

Jack. In Type I loading, it was found during pilot tests

that the supporting frame also deflected appreciably and

therefore deflections of the support were also measured.

Electric inductance gages of the moving core solenoid

type, commonly known as Linear Variable Differential

Transformers (L.V.D.T.), were used to measure the deflections.

These gages were of the type 1000 - 88 - L (manufactured

by Schaevitz Engineering Corportation) with a linear range
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of + 1.0". The core and the transformer of the L.V.D.T.

were mounted on a special attachment shown in Fig. 3.21.

One end of this attachment was connected to the specimen,

while the other end was connected at a suitable point

independent of the supporting frame. These connections were

such as to allow the attachment to rotate so that it re-

mained radial when the arch deformed under load. Fig. 3.11

shows the set up of L.V.D.T.'s.

For Type II loading, radial deflections

were measured at the crown and at two quarter points (Fig. 3.20).

At quarter points the attachments as described in the

above paragraph were used to mount the L.V.D.T.'s while

at the crown the L.V.D.T. was mounted directly on the

jack. The setup of L.V.D.T.'s is shown in Fig. 3.12.

For Type III loading, radial and tangential

deflections were measured at the two quarter points. Type

2000 - S9 - L L.V.D.T.'s with a linear range of + 2.0"

were used to measure the radial deflectionB, while tangential

deflections were measured by type 1000 - ss - L L.V.D.T.'s.

The L.V.D.T.'s measuring the radial deflections were mounted

directly on the jack while the L.V.D.T.'s, measuring tan-

gential deflections, were mounted on an attachment as
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shown in Fig. 3.13.

(d) Measurement of Natural Period: The

natural periods of types A and B specimens in the first

bending mode (i.e., antisymmetric mode) and in the second

bending mode (i.e., mode corresponding to the configuration

of the arch under a point load at the crown) were measured.

For this purpose displacements corresponding to each mode

were given to the arch specimens, released suddenly, and

the resulting vibrations measured by very sensitive L.V.D.T.ts,

(Type 020 MS - L, linear range = 0.02") connected to the

C.E.C. recorder.

3.5 TESTING TECHNIQUE

In this section a brief description of the method of

static and dynamic testing is given.

3.5.1 Static Tests:

The specimens were mounted in the frame and con-

nected to the loading jacks as shown in Figs. 3.11, 3.12

and 3.13. The specimens were loaded by continuously

building up the oil pressure on one side of the jacks, until

the specimens failed. A continuous record of all the

measurements was obtained by running the C.E.C. recorder

at the slow speed of 0.80 in/sec. The duration of test

on an average was 3 to 4 minutes.
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3.5.2 Dynamic Tests:

The specimens were mounted in the frame and

connected to the loading jacks as in static tests. Equal

oil pressure was built up on both sides of the jacks. In

order that no load be applied to the specimen, while the

pressures were being increased to the required value, it

was necessary to maintain an equal pressure on both sides

of the jacks at all times. This was done by keeping

the valve which interconnects the pull and push side re-

servoirs, open. This valve was closed after the required

pressure was attained on two sides of the jack and then

the pull side was "dumped" by opening the dump valve. The

latter was operated by sending a predetermined command

signal to the servo valve which controls the dump valve.

In this way the dynamic loads with-a rise time between

10 to 20 milliseconds were applied to the test specimens.

A record of all measurements such as applied load, de-

flections, etc. with respect to time was obtained on the

C.E.C. recorder running at the high speed of 21.6 inches/sec.

In all cases a failure pulse slightly greater

than the estimated failure resistance of the specimens

under each type of loading,was applied. fue to limitations

of the loading machine, it was not possible to apply



partial loads on test specimens except for type "A''

specimens under compression mode loading (Type I),

because the failure loads were too low in other cases.

Partial loads with a rise time between 10 to 20 milliseconds

and a flat peak of considerably longer duration (about

1000 milliseconds) were applied to some of these type "A"

specimens.
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Figure 3.3 - Wooden Form Work for Type A Specimens.

Figure 3.4 - Device for Making Reinforcement Cages for
Type A Specimen.
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Figure 3.11 - Experimental Set Up -

Type I Loading.
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Figure 3.12 - Experimental Set Up -

Type II Loading.
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Figure 3.13 -Experimental Set Up-

Ty~pe III Loading,
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 INTRODUCTION

In this chapter the test results of all specimens are

presented in tabular form (Tables 4.1 to 4.6). In these

tables values of ft , experimental failure load, experi-C

mental deflections, and rise time of the failureload in

the case of dynamic tests are given. Theoretical failure,

load and deflections for each specimen, calculated on the.

basis of conventional theory presented in Section 2.5 of

Chapter 2, are also given. It should be noted that the

values of the theoretical deflections given in each table

are the elastic limit values base-d on the failure load

obtained from the tests. Comparisons between the ex-

perimental results and those obtained by the analysis

presented in Chapter 2 are made and discussed in Chapter 5.

4.2 SUMMARY OF TEST RESULTS - TYPE I LOADING

4.2.1 General:

The test results of type "A" and type 'B" specimens

are summarized in Tables 4.1 and 4.2, respectively. As

mentioned in Section 3.3 of Chapter 3, the radial dis-

tributed load was simulated by ten points loads on the

arch specimen. These point loads are converted into

equivalent distributed load per inch and these equivalent
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values are presented in Tables 4.1 and 4.2. Instead of

presenting the measured radial deflections at crown and at

54' points separately, the summation of these measured

deflections is presented in Tables 4.1 and 4.2 and compared

to the corresponding theoretical values. This was done in

order to eliminate unsymmetric behavior of the test

specimen, which occured due to unavoidable irregularities

in the test specimens and in the loading apparatus. Certain

specimens such as A-3, A-9, A-10 etc., or B-3, B-18

etc. are not included in Tables 4.1 and 4.2 because some

of these specimens were not tested due to excessive honey-

combing in the concrete, while for certain other specimens

reliable results were not obtained due to malfunctioning

of the loading device or measuring equipment.

4.2.2 Static Tests:

The results of the static tests seem quite

satisfactory. The variation in experimental failure loads

is well within + 15% of the loads predicted by the conven-

tional theory except for specimens B-land B-2. In these

latter cases the concrete may have had less strength than

that indicated by the test cylinders. It is also inter-

esting to note thRt, except for specimens A-1 and B-10,

the experimental failure loads are lower than those pre-

dicted by the conventional theory. This is probably due to
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secondary bending effects introduced for many reasons. The

detailed discussion on the comparison between test results

and the theoretical results is deferred until Chapter 5.

The failure of the specimens was mainly by the

crushing of concrete at a few points along the arch. In

a few cases, the specimen failed by crushing at only one

spot, while in other specimens the evidence of failure was

distributed. Photographs of typical specimens after failure

are shown in Figs. 4.1 and 4.2.

For a few specimens such as A-l, A-2, B-i, etc.,

reliable deflection measurements were not obtained and

therefore these results are not given in Tables 4.1 and

L.2. Load deflection curvesof typical specimens are

given in Fig. 5.1 (Chapter 5). Comparison between

theoretical and experimental failure loads is shown in Fig.

4.3 to indicate the scatter in the test results.

4.2.3 Dynamic Tests:

In the dynamic tests of type "A" arches, specimens

A-8 and A-11 were tested by applying only one pulse corre-

sponding to the failure pulse. On specimens A-12, A-13,

and A-17, a partial pulse was first applied and measure-

mentsobtained. These specimens were then tested under a
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failure pulse. On specimen A-19 two partial pulses were

applied before applying a failure pulse. It was not possible

to apply partial loads to the type "B"' specimens because

the failure loads are considerably lower and the loading

apparatus is not capable of producing partial dynamic

pulses sufficiently small.

Type "A"A specimens show an average dynamic in-

crease of about 18% in failure load over the theoretical

static failure loads. Type 'B" specimens show an average

increase of about 27% if specimens B-12 and B-13 which

show exceptionally large increases are not considered.

This percentage increase in the failure loads seems

reasonable on the basis of the expected increase in material

strength. The increase of about 100% in the failure loads

for specimens. B-12 and B-13 cannot be fully explained

on the basis of the increase of material properties and

inertial effects.

The failure in all specimens was mainly by the

crushing of concrete simultaneously at a few points along

the arch. Photographs of typical specimens after failure

are shown in Figs. 4"4 and 45..
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The load-time curves and deflection-time curves

of typical specimens are given in Figs. 5.2, 5.3, 5.4 and 5.5

of Chapter 5, and the load-deflection curve of type ?IAI

specimens is shown in Fig. 5.6 Chapter 5. In this

curves the partial and failure loads of each specimen are

non-dimensionalized with respect to the theoretical

static failure loads. These non-dimensionalized values

are plotted against the corresponding experimental

deflections values given in Table 4.1. The experimental

failure loads are plotted vs. theoretical static loads

in Fig. 4.3 to indicate the scatter in test results and

the general difference between static and dynamic results.

4.3 SUPMARY OF TEST RESULTS - TYPE II LOADING

4.3.1 General:

The test results for type "A" and type '1B"

specimens are summarized in Tables 4.3 and 4.4, respectively.

4-.3.2 Static Tests:

The results of the static tests seam quite reason-

able. The failure load of B-19 is within 2% of the failure

load predicted by the conventional theory. While for

specimens B-21, A-21, and A-22, the experimental values

are higher by 10 to 15%. There are several factors which

could have caused the higher experimental values. One
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reason could be that the supports may not behave like

perfect hinges and may introduce some restraint, which would

tend to increase the experimental failure load. Secondly,

the yield stress f in the steel is taken at 40 ksi,
y

while predicting the conventional theoretical loads. The

stress-strain curve of the steel (See Figs. 3.5 and 3.6)

is not exactly bi-linear but follows a flat curve after

40 ksi. It is obvious that the strain in the steel at

failure in both "A'' and "B"f specimens is much greater

than the yield strain at 40 ksi, which suggests that

at failure the stress could be higher than 40 ksi.

Therefore, the experimental failure loads could be higher

than that predicted by conventional theory using

f = 40 ksi.

The failure of the specimens occured by the

formation of three hinges, one at the crown and the

other two in the vicinity of the quarter points. The

locations of these latter hinges almost coincided with the

theoretical prediction of hinge formation at points 380

from the supports. Photographs of typical specimens

after failure are shown in Figs. 4.6 and 4.7.
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The failure of the specimens seemed quite ductile.

The maximum radial deflection at the crown was of the

order of 0.45" for type "A" and 0.85" for type "B" specimens.

The load-deflection curves of typical specimens

are given in Fig. 5.7 and 5.8 Chapter 5. To represent the

scatter in test results the experimental failure loads

are plotted against conventional theoretical loads in

Fig. 4.8.

4.3.3 Dynamic Tests:

All specimens were tested for failure only.

Because the failure loads were extremely small, no

attempt was made to apply partial loads.

Type "Al specimens show an average dynamic

increase of about 55% in the failure loads over con-

ventional theoretical static failure loads. For

Type ''B specimens the increase is of the order of 70%.

Part of this rather large dynamic increase can be

attributed to the larger than expected static strength

as discussed in the preceeding section. The remiaining

increase is due to the increase in material properties

due to very rapid strain rates and to inertial effects.

On this basis, the test results seem quite reasonable.
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The failure of the specimens was similar

to that observed in static tests as described in

Section 4.3.2. Photographs of typical specimens after

failure are shown in Figs. 4.9 and 4.10.

The failure of the specimens seemed quite

ductile. The maximum radial deflection at the crown

was about 0.5" for type A and about 0.9 for type B

specimens.

The load-time and deflection-time curves of

typical specimens are shown in Figs. 5.9 and 5.10

Chapter 5. The scatter in test results is indicated

by Fig. 4.8.

4.4 SUMMARY OF TEST RESULTS - TYPE III LOADING

4.4.1 General:

The test results for type A and type B specimens

are summarized in Tables 4.5 and 4.6, respectively. The

results for specimen B-28 are not given in Table 4.•,

because no reliable results were obtained.

The deflection data in Tables 4.5 and 4.6, clearly

indicate that the strain in the steel wires at failure

must have been considerably higher than the strain

corresponding to a stress of 40 ksi, at which yielding

begins. Therefore, as explained in Section 4.3.2, it

seems reasonable to assume a higher value of fy while
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calculating the failure load based on conventional theory.

A value of 46 ksi is used in the calculation of these

conventional theoretical failure loads.

4 .4.2 Static Tests:

The results of the static tests of type "A"

specimens seem quite reasonable. Experimental failure

loads on an average are about 9% higher than the

conventional theoretical failure loads, except specimen

A-33, for which the failure load is lower by about 9%.

The latter specimen was actually loaded twice. The first

run was terminated after about 60% of the failure load

had been applied, due to difficulties in the loading

device. It was then loaded to failure. The preloading

could have damaged the specimen and caused failure under

a lower load. The increase in the failure load of all other

specimens over the conventional theoretical load seems

partly due to the restraint at the support as explained

in Section 4.3. 2 and partly due to the effect of the

weight of the loading jacks on the test specimen as

explained below.

It is clear from Fig. 3.13 that about half the

weight of the Jack is applied to the arch at the loading

points. Theoretical considerations indicate that if the

top Jack was "pulling" the arch and the bottom Jack "pushing"
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(see Fig. 3.13), the failure load increases by the same

amount as the applied weight of the jack. On the other

hand, with the top jack "pushing" and the bottom jack

"pulling", the failure load decreases by the same amount.

This effect is more severe in the case of type

B specimens because the failure loads are only six to

seven times the applied weight of the jack (which is about

10 lbs) as compared to 40 times the applied weight in the

case of type A specimens. In order to eliminate this

effect, specimens B-26 and B-27 were tested with the top jack

"pulling" and the bottom jack "pushing", while the reverse

was done for B-29 and B-30. Table 4.6 indicates that the

average of the failure loads of B-26 and B-27 is 91 lbs.

and of B-29 and B-30 is 52 lbs. Therefore, an average of

these two values or about 71 lbs. should be considered as

the experimental failure load. The average conventional

theoretical load for these specimens is about 60 lbs., and

the eleven-pound increase in the experimental load can

easily be due to the various factors mentioned previously,

or small errors in measurement. The test results are

therefore considered quite reasonable.

The failure of the specimens occurred by the form-

ation of hinges very nearly at the quarter points. Photo-
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graphs of typical specimens after failure are shown in

Figs. 4.11 and 4.12. The failures were quite ductile with

maximum radial deflection at the quarter points of the order

of 1.5" for type A specimens and about 2" for type B

specimens.

The load deflection curves of typical specimens

are given in Figs. 5.11, 5.12 and 5.13, Chapter 5. The

experimental failure loads are plotted against conventional

theoretical loads in Fig. 4.13 to indicate the scatter in

experimental results.

4.4.3 Dynamic Tests:

All specimens were tested for failure only.

No attempt was made to apply partial loads for the reasons

already mentioned.

Type A specimens show an average increase of

about 8% in failure loads over the conventional theoretical

static failure loads. Out of this about 10% is probably

due to partial support restraintand the effect of the

weight of jacks on the failure loads, as already explained

in previous sections. The remaining increase is attributed

to the increase in the material properties due to rapid

strain rates and inertial effects. This is discussed in

more detail in the next chapter.
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Dynamic tests on type B specimens were performed

with the top Jack "pulling" and the bottom Jack "pushing".

No tests were performed in the reverse condition as was

done in static tests. Therefore, the results of dynamic

tests of these specimens should be compared with the corres-

ponding results of the static tests, i.e,, the results for

specimen B-26 and B-27. This type of comparison shows an

average increase of 180% in dynamic failure loads. This

increase seems to be due to the increase in the material

properties under very rapid strain rates and inertial

effects. This aspect is discussed further in the next

chapter.

The failure of the specimen occurred by the

formation of hinges very nearly at the quarter points, as

in the static tests. Photographs of typical specimens

after failure are shown in Figs. 4.14 and 4.15. The failure

of the specimen was quite ductile. The maximum radial

deflection at quarter points is about 1.25" for type A and

1.7" for type B specimens.

The load-time and deflection-time curves for

typical specimens are shown in Fig. 5.14 and 5.15 in

Chapter 5. To indicate the scatter of experimental results,

experimental failure loads are plotted against theoretical

static failure loads in Fig. 4.13.
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TABLE 4.1

8UMMARY OF TYPE 'A" SPECIMENS - TYPE I LOADING

Type Speci-l Type f Pu UTH tr w rWH PuZ _ wm

of men of o ST ( li m TH

Test No. Pulse (psi) (lbs/in) (lbs/in) THsT seconds) (inch) (inch)

A-1 4300 1215 1030 1.18
S
T A-2 3460 765 875 0.875
A
T A-4 4010 970 980 0.99 0.086 0.077 1.12
I
C A-5 3800 920 930 0.99 0.135 0.076 1.78

A-B ail-ureaA-8 Pulse 41
6

0 1130 1005 1.13 8 0.235 0.088 2.67

A-Il Failure
Pulse 3500 1010 880 1.15 10 0.853 0.085 2.98

Partial
Pule I 415' 15 0.0760

D A-12 3400
Failure 1108 860 1.29 11 0.213 0.095 2.24

Y Pulse

Nf
N Partial

APulse I j7'1 l7t
A A-13 3160

M Failure 980 815 1.20 10 0.290 0.086 3.38
Pulse

I - -- I_____ I_____ I__________

Partial 70
0Pulse I 700 19 0.1300

A-17 344.0
Failure 920 870 1.06 11 0-.176 0.078 2.26
Pulse

Partial
Pulse I 565c 16 0.153o

A-19 Pulse II 2640 735" 20 0.1820

Failure 880 715 1.23 11 0.118 X O.O61x 1.94
Pulse

These are loads representing flat peak of the partial pulse.
x This is the summation of radial deflection at crown and at one 540 point

These are the summations of max. deflection at crown and at 54' points, at load
corresponding to the flat peak at partial pulse.

Pu EXP - Experimental failure load.

PUTHsT - Theoretical static failure load.

•-lWm - Summation of maximum experimental radial deflections at crown and at two 54' points.

wmTH - Summation of theoretical elastic radial deflection at crown and at two 540 points,
at experimental failure load.

t
r - Rise time of the load.

-119-



r- co rO r,- 0C HA 2Z \

H" OD C) C a
coV N H Go Hc C - H

0 0 0 -H H 0 0 H

-; - 0 0 0 ' 00'

C) Got n 0 0 co 'C)

Sa0 0 CMj H- H CM H H

0

0 r a' 0 H > 0 C

4A HO0 H H- H H- n'\ -

H ) Hý

-C) p 0

EH P-I 0~ r ) .C a ' - \ j a) C0'

U2 4C) H ' a ) ' H If

'C 0 0 0~ Ho 0 0- 0 H CM HQ H H N

4ý CO

C)~~ Ca- ' 00\)C 0 CM- CMoa) 0 a
PA Ca A CI) 0 cc ) 4 ) b-\ rn Ho CM CM CM 0 k CM

11:5~ H o (" N2 2 r r') C' n M" 2 -z .:j C" " -D

a Ca 0 O H 0o

H~ ____CI-__OI_\4-' Ci
,_ _ __ _ __ _ r- Go 0r mq1 4

0i 
C) C

0~ a)

4) H r' C H r4 H 5

::5' C) P

H 000 0C0 - 0r 0 0 0 C
r-CCN H r-4 H)' H' 0 ' "CM M 2

Go a) H 0-

C)H~- HH - -

M Hd

0~~C W )E- )

P 0 EC) - M C" - C C

e0. H CM H H H H -,12 HH0M -



t) coA 1- (n 0 '0 4)

00

4)

V) 0

C)~~ FA , -

0 C) 0 C) C
4 '

-~ ,,~C)' 4, 4

,0I N- Cd P-\ 1Ž )
t' ) _z Nl- C') OD ) 0) 4)
rl 0 0) H 0 C\J r(

0 4

H0 Hl co0s Q

0 C) Go -L\ CoA Uý HIN
0 -~- -f V\ U\ zj4-

H~~C --- Cod0 ) C)

4)ý 0

14) 0 0

(Y) co '0 (\J 4-'C

4, C) 2l (2C' ) 4, -

(I) -4 )

0C V H 0
P, 4' *,A

H ý co.I 0) N)\ .U\ '0N D C)I 4'ý

p,> i H HU p0 0- -p -4 4)
PQH ý p 4o q* H 4

C4 ca P, P C) '4 ' .41) q-,
H _ ___ __ 0 0V V 4

P Hd H H

HY H, n U4) a) C4 Z -.

('N H Cý 'n n~ 4)I 04 11 0 d V
H- HC) H 4)I 1-1 V

(D C) 0 H 0
0 4) C) C)-C ) C 0 H H~4)

ý) 00 N--:±0C) z 4, H 4-D 4) a) 4) )
x. - ) H ) H, 0' C') H 4- 4, 4) H

H- 4, 41)
a) C)r-

Ci) Hy I' C) 0 V 0 C) zCa0) C.)) Q,
4  

4

en, 4D CC) -P 1
Q) ('N (Ct 4, 4 ý4

_ _ _ _ _ FA Ci) FA4

~ ) 0 P, H 0 4)
a)- ~ 00 ( 4) 4) x 4) 02

CO -HV HoE

E-4 4 P14 P.' 4
0 )4) CO)HH C C)HE-4

H E- _ _ __

-121-



U-o 110
N o N0 0 n (n N'

0 0 0- 0\ 0 0-

'0 If\ 10 0o 0o '
H - c N C~ ) rr

0 0 0 H

0 [,0 - 0 0

o4 N- - Ol 0f

HC;\ N H;

o - r. o 0 o 0 o 0 0

4o H 0 HC N-i 0 0-

l N- C' j 0' t' -0'
H. 0 0 D 0 Y 0 -0 H

E'E-

PI P-4

U) H- C O H 0 H o H H

N6 '0j N 0~ N- N

OD HJ 00 0' r- .

H H H HeHn

'I ) 02 0020 0

10 Go N - c o c Cco o)

C. N N~ N~ N~ N N 5

0i 02
02

-122-



0

a) 4a

2f\ I C- 0 C\J c 0r. P N D 0' lýC 0

0~ 0 0' 0C) 0 0 0 H COý 0 4O H1
0\ 0 H C\J H, 4 4-

-H
Cý 4-) Pý

C1 4. -1 0- (NJ 0- H- N- (N O '
C() 0) 0) 0 H H H 0 4

-1 - 0 0 0 0) 0 0D 0l 0C 4)w 4-ýP 64 E -4_ c c ) (_ _)_r_ - 1

-H Q)

Hd W H -1 'Hl co bH H r H ' H f H D H ~ H n H D H D H r H ý ;

PL' Qa C
W M~ '0 r- -'O ý O 0 '0 Y, 4

4 4- HO Hd H Hx

0)~U EQ V H -

D) P. 2 0 H '0 0o (\, - H ~ H H s H UcN co a,- Hd HFIH 0 H- HN 0 H a-' H~ [I- 0'- \O 0 0 4-)

W (1) H 0 4) C) 4
0) 0~ ~ 0 Hý H H 4) H H H *~co pcy, H V- a\J HnL\ \ - a) a ) ) aC) NNHj r) rý m rý( y C' > E r S- 4

C0' (JCO P0 -0 PJ -P p E N r
E-4 U-, PL. 10 U f N UN CpCN l, 0 a H

B-I 0 CO (' CO (' (' (N (N I (N N (N12H3-S



o 'D 0.zN

00' CM 0, 0 0 Go-

o CMj 0~ Cý M C

iii

pq Iz co CM

o 00 0 0 0o

EH 0 0 CM j 0 '0

00 0ý 'o

PQ -P HOC;C

HD CM 0 D 0 A H0 w~H V

0 1S\ 4z ' M ~ C

to~~~~ ll ýH H 0 -

C~ CMj 9-.

CM0C 0 CM 0 0 H H~ 0 u) ) 0 N. D '0 '0 N0

0- () :41 o G
r' n 0 n 0 M\ H YA~

r- o' CMr CMj CMn

4:

0

CMA MH 0 ) 0ý 0: 0- 0- 00

0 02

El 

1 124



4.5 NATURAL PERIOD OF ARCH SPECIMENS

The natural periods of the arch for the first bending

or antisymmetric mode and the second bending mode (i.e.,

the mode corresponding to the configuration of the arch,

under a point load at the crown) were experimentally

determined for one specimen of each type. These values

are given in Table 4.7. The natural period for the

compression mode" was not determined experimentally.

TABLE 4-7

NATURAL PERIODS

Mode Natural Period (Milliseconds)

Type A Type B
Specimen Specimen

First bending mode 25 59

Second bending mode 6 12

"The natural period in the compression mode is approximately

given by r/1800 (see Ref. No. 13 in bibliography, p. 5B-15).

Therefore the natural period for both types in the compression mode

is about 0.83 milliseconds. In the above formula "r" is the

radi~us in feet.



Figure 4-.1 -Appearance of Specimen A-4b after Test-
(Static Test - Type I Loading).
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0

F! g~tre 4~.2 -Appearance of Specimen B-10 after Test-
(Static Test - T-ype I Loading).
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Figure 1.4 - Appearance of Specimen A-17 after Test -

(Dynamic Test - Type I Loading).
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Pigure 4..• - Appearance of Specimen B-13 after Test -

(Dynamic Test - Type I Loading).
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Figure 4.6 - Appearance of Specimen A-21 after Test -

(Static Test - Type II Loading).
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Figure 4.7 - Appearance of Specimen B-21 after Test -

(Static Test - Type II Loading).
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Fligure 4-.9 -Appearance of' Specimen A-25 after Test

(Dynamic Test - Type II Loading).



AILI

Figure 4.10 - Appearance of Specimen B-22 after Test -

(Dynamic Test - Type II Loading).
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Figure [411 Appearance of Specimen A-30 after Test -

(Static Test - Type III Loading).
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Figure 4.1 2 
- Appearance of Specimen B-26 after Test -

(Static Test - Type III Loading)
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Figure 4.1. - Appearance of Specimen A-35 after Test -

(Dynamic Test - Type III Loading).
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Figure 4.15 - Appearance of Specimen B-31 after Test -
(Dynamic Test - Type III Loading).
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CHAPTER 5

COMPARISON OF THEORETICAL AND EXPERIMENTAL

RESULTS

5.1 INTRODUCTION

For the purpose of comparison, certain experimental

specimens of both type A and type B are analysed theoretically.
The nonlinear theory developed in 3 2.1 through 2.4 is used

to obtain the static and dynamic response, ultimate loads and

.,is for type I and type III loading. The average dynamic

strain rate edc necessary to obtain the dynamic properties of

concrete (equation 2.2b) is calculated as edc = eu/tr. These

ultimate loads and _u's are called analytical results. The

elastic limit deflections needed to calculate the ,Au's are

obtained by using the formulae presented in ý 2.5. Further,

a set of static ultimate loads for all three types of loading

is also obtained from the conventionaltheory presented in ý2.5.

The ultimate loads calculated in this way are referred to as

"theoretical ultimate loads".

5.2 THEORETICAL AND EXPERIMENTAL RESULTS AND THEIR

COMPARISON.

5.2.1 Type I Loading:

A summary of the experimental and analytical

values of the ultimate loads and ,u's for certain specimens

of type A and type B is given in tables 5.1a and 5.lb
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respectively. Also listed in the tables are the theoretical

static ultimate loads.

(a) Static Behavior:

Tables 5.1a and 5.lb clearly show that

the analytical values of the ultimate loads agree within

ten percent with the experimental values for specimens A-2,

A-4, A-5, B-11, B-15, and B-16. However, the experimental

ultimate loads for specimens B-1 and B-2 are much lower and

those for A-1 and B-10 are higher than the analytical values.

This may be due to a possible difference between the strength

of concrete in the test specimens and that indicated by the

test cylinders.

The comparison between the theoretical and experi-

mental ultimate loads has already been made in 4.2.2. How-

ever, attention is drawn here to the fact that the experiment-

al failure loads are in practically all cases lower than the

theoretical failure loads. This seems to be due to the

presence of secondary bonding effects which are not considered

in the theoretical calculations. The secondary bending

effects occur for such reasons as: (1) the shape of the arch

does not confirm to the funicular polygon of the compression

mode loading; (2) in the tests, the unirormly distributed

load is simulated by ten equally spaced point loads;(3)These

ten point loads, applied on the test specimen may not be
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exactly equal, due to the limitations of the loading

apparatus; (Lk) the arch cross-section may not be exactly

uniform along the length.

A comparison between the analytical and theoretical

values shows that both agree within ten percent for most of

the specimens. The analytical values are, however, consist-

ently lower in all cases; the reason being that the secondary

bending effects are not considered in calculating theoretical

loads.

Table 5.1 (a) and 5.1 (b) also indicate that except

for specimen A-5, the experimental ,u - values are lower than

the analytical u - values.

Fig. 5.1 shows the analytical and experimental load-

deflection curves for specimen A-5, selected for illustration,

to be in fair agreement.

(b) Dynamic Behavior:

It is seen from tables 5.la and 5.lb that the

analytical values of dynamic ultimate load agree within

about fifteen percent with the experimental values for all

specimens except specimens B-12 and B-20. The high experi-

mental ultimate loads for these specimens may be in part due

to an increase in material strength under rapid strain rate,

higher than that considered in the analytical approach.

The analytical and experimental jp-values lie

within a range of 1.5 to 2.5.
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Figures 5.2 5.3 and 5.5 show analytical and

experimental load-time and deflection-time curves for

specimens A-11, A-17 and B-14. These curves represent a

failure load pulse. Specimen A-17 was also tested under

partial load pulse and the load-time and deflection-time

curves for this partial load pulse are shown in figure 5.4.

All the curves show a fair agreement between the analytical

and experimental results. Figure 5.6 shows the analytical

and experimental dynamic ioad-deflection curve for type A

specimens. The points on the experimental curve are obtained

from a number of tests by nondimensionalizing the dynamic

load with respect to the corresponding theoretical static

ultimate load of each test. The analytical curve pertains

to specimen A-17.

(c) Comparison Between Dynamic and Static

Behavior:

Table 5.3 shows the experimental and

analytical values of the dynamic increase factors (DIF) for

both type A and type B specimens. The dynamic increase

factor is obtained as a ratio of the average nondimensional

dynamic load to the nondimensional static load; the average

being obtained from the values given in tables 5.la and 5.1b.

The values of experimental ultimate loads of specimens B-12

and B-13 are not considered in obtaining the average non-

dimensional dynamic load because these values seem
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unreasonably high. The experimental and analytical dynamic

increase factors vary between 1.2 and 1 .4. This increase

is mainly due to the increase in the properties of materials

at very rapid strain rates.

5.2.2 Type II Loading

No comparison between the experimental and

analytical results under this type of loading is possible

because the non-linear theory cannot be used to predict the

ultimate loads for the reasons explained in § 2.1.3. A

comparison between the experimental and theoretical failure

loads is already made and reasons for the differences in the

values, if any, are explained inj• .3.2. Therefore, in

what follows, only a comparison between the experimental

static and dynamic behavior is made.

In table 5.4; tne values of static and

dynamic ultimate loads for the type A and type B arches are

given. These are the average values of those given in

tables 4.3 and 4 .4 for type A and type B specimens respec-

tively. It is reasonable to take such an average, even

though the value of fc varies, for each specimen in the

tests, because the influence of fe on the ultimate loads

of such underreinforced elements, where the bending

moment is predominant compared to the axial thrust, is

insignificant. Table 5.4 shows that the dynamic increase
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is of the order of 36% for type A arch and about 57% for

type B arch. This increase seems to be partly due to the

increase in the material properties under very rapid strain

rates and partly due to inertial effects.

The load-deflection curves for specimens A-21

and B-21 (static tests) are shown in Figures 5.7 and 5.8,

while Figures 5.9 and 5.10 show the load-time and deflection

time curves for specimens A-24 and B-24 (dynamic tests).

5.2.3 Type III Loading

The experimental values of the static and

dynamic ultimate loads and gut s for type A and type B arches

are given in table 5.2. The values of the theoretical

static ultimate loads are shown in table 5.2. These values

are the averages o 4 those presented in tables 4.5 and 4.6.

The analytical values of the static ultimate loads and )u's

given in table 5.2 are those obtained for specimens A-34

and B-26, while the corresponding values for dynamic tests

are for specimens A-37 and B-32. The analytical values are

calculated by taking fy = 46 ksi, for the reasons explained

in article 4.4.1, A comparison between these analytical

values and the average experimental values is reasonable,

for reasons already mentioned in the previous section.

(a) Static Behavior:

The experimental ultimate loads agree

with the analytical and theoretical values within about
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ten percent. Table 5.2 also indicates an excellent

agreement between theoretical and analytical values of

ultimate loads. The analytical values of xu's are much

smaller than the experimental p ts because of the convergence

difficulties in the analytical approach as explained in

1 2.3.7. Figures 5.11, 5.12 and 5.13 show the analytical

and the experimental load deflection curve for specimens

A-28, A-34 and B-26 respectively.

(b) Dynamic Behavior:

The analytical value of the ultimate load

of the type A specimen is 17% lower than the experimental

value while for the type B specimen, this difference is as

high as 40%. The analytical ku's are lower than the

experimental /u's. The lower analytical u-value can be

explained on the basis that in the analytical calculations,

the arch is considered to have failed when the compressive

strain in extreme fibres at any one point in the arch

exceeds eu = 0.0038 inches/ in.: while in tests, the

extreme fibre strains at failure could be much larger than

eu. In figures 5.14 and 5.15 are shown the analytical and

experimental load-time and deflection-time curves for

specimens A-37 and B-32 respectively. These curves indicate

a fair agreement between the analytical and experimental

results.
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(c) Comparison of Dynamic and Static Behavior:

In table 5.4 a comparison between the

experimental and analytical dynamic increase factor (DIF)

is snught. The value of the experimental static ultimate

load for type B atches, given in this table is an average

of those of specimens B-26 and B-27; while the specimens B-29

and B-30 are not considered in this average value, in order

to have a consistent comparison between static and dynamic

behavior as explained in detail in paragraph 3 of § 4.4.3.

The experimental values of the dynamic increase

are of the order of 65% and 179% respectively for the type A

and type B arches. The corresponding analytical values are

49% and 145%. Thus the agreement between the experimental

and analytical values is quite good. This dynamic increase

seems to be due to the increase in the material properties

under very rapid strain rates and also due to inertial

effects. The comparatively larger dynamic increase in the

case of type B arches is possibly due to the presence of

substantial inertial effectsas compared to type A arches.

The experimental as well as analytical pi-values

for the dynamic case are smaller than those for the static

case. (See table 5.2). This is, in part, due to the fact

that the elastic-limit deflections are calculated at the

ultimate loads which are considerably higher in the dynamic



case. Therefore the elastic-limit deflections are

considerably higher and the x-values are lower.
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CHAPTER 6

CONCLUSIONS

The following conclusions can be drawn on the basis

of the analytical and experimental investigations as well

as the approximate theoretical analysis.

1) The static ultimate loads obtained experimentally

are in good agreement with both the conventional

approximate theory and the non-linear theory developed

herein.

2) In the compression mode loading, the dynamic

increase in ultimate load is mainly due to the

increase in properties of materials under very

rapid strain rates. This increase is about 30

to 35%.

3) In the cases of a concentrated load at the

crown and antisymmetric concentrated loads at

quarter points, the natural periods of the arches

in the flexural mode (and hence the inertial effects)

have a significant influence on the dynamic increase.

This increase is much higher than that in the case of

oompression mode loading.

4) In the compression mode loading the analytical

and experimental values of )u are of the order of

1.5 to 2.5.
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5) For a concentrated load at the crown the

experimental value of p is about 9fbr the

static case and about 7 for the dynamic case.

6) The experimental value of pa for antisymmetric

concentrated loads at quarter points is of the

order of 15 for the static case and varies between

3 and 7 for the dynamic case.

7) The analytical approach is adequate to compute

the ultimate loads in most of the cases considered;

however, it gives quite conservative results for

the dynamic antisymmetric quarter point loading.

8) Experimental and analytical results indicate

that the approximate static theory is quite adequate

to predict the static ultimate loads for under-

reinforced sections. The dynamic ultimate loads

for compression mode loading can also be predicted

by the approximate theory provided that an approp-

riate dynamic increase factor (based on the increase

in material properties) is used.

9.) From the comparison between the analytical

results and those obtained from the approximate

analysis based on a single degree freedom system

(§ 2.7) it seems that the latter may give
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unconservative dynamic failure loads, if the duration

of loading is less than about half the natural period.

However, clear reasons to explain this fact are not

evident and further investigation is needed.
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APPENDIX I

VARIOUS CONSIDERATIONS.FOR FORCE-STRAIN RELATIONS

BASED ON LINEAR CONCRETE STRESS-STRAIN CURVE

As explained in j 2.3.4, in order to solve the non-

linear force-strain relations to obtain strains el and

e., it is necessary to have certain approximate values

of these strains to start the 'Newton-Raphson iteration'

(Appendix II). These approximate values of strains at

the bottom and the top of the section denoted here by ee,

and ee4 are calculated by assuming that the stress-strain

curve for concrete is linear with a modulus of elasticity

Ec .and that the tensile stresses in concrete are neg-

ligible. The value of ' is assumed to be less than Ec,Sc

the initial tangent modulus, so that the linear stress-

strain curve closely approximates the non-linear curve

even at high stress levels. The following considerations

are necessary to calculate the values of eel and ee 4 .

At any section i, Ni and Mi are known. From these

are calculated,

I! I, 2

N = N • fcbt and M = M f 0bt (Al.1)

Also are calculated the gross Area A and the gross momentg

of inertia I of the section.
g
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A = bt + Ptbt(n-l) 1
bt3 ,2(AI.2)

bt dand g = 1-= + Ptbt(n-l) -7-

The various possibilities of the strain distributions

on the section are,

(i) N = 0 and M is positive or negative:

ee4

-ee le

Figure Al.1 Strain Distribution - Case (i)

(ii) N is positive and M is positive or negative:

There exist two possibilities in this case.

SIMI /- 21
If - < 21 the entire section is underif N • tA

g

compression (Fig. A1.2); otherwise the section is partly

in compression and partly in tension (Fig. Al.3).

ee

-M

ee ee

Figure AI.2 Strain Distribution - Case (ii)
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-ee 41I I

Figure A1.3 Strain Distribution -Case (lii-ee

ee -ee

Figures A1.4 Strain Distribution -Case (iii)

(iii) N is negative and M is positive or negative:

Again there exist two possibilities. The first

possibility is that the section is partly in compression

and partly in tension (Fig. AI.L), while the second

possibility is that the section is entirely under tension

(Fig. Al.5). The criterion used for distinguishing these

possibilities from each other is:

If > M 0, Fig. Al.5 is applicable, and

if otherwise, Fig. Al. 4 is to be used. This criterion
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is approximate since NI - 0 indicates that2 t

the strains in the concrete cover over the top steel (if

M is positive)or in the concrete cover over the bottom

steel (if M is negaiive) are compressive. This signifies

that the section is not completely in tension until INI

is somewhat greater than that required by this criterion.

However, since the depths of concrete covers are usually

small as compared to the total depth of the section, this

approximate criterion is accepted.

-ee -

-ee - ee

Figure Al.5 Strain Distribution - Case (iii)

The equations necessary to calculate the strains

ee and ee in all the above cases are readily obtained

by considering the equilibrium of the internal and

external forces acting on the section. These equations

And the criteria used to classify all the cases are

incorporated in the computer program, (Appendix III).
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APPENDIX II

'NEWTON-RAPHSON ITERATION' FOR_'SLVING

NONLINEAR SIMULTANEOUS ALGEBRAIC EQUATIONS

A2.1 'NEWTON-RAPHSON' METHOD

This method(12) affords an effective iterative procedure

to obtain the solution of two or more simultaneous non-

linear equations. For example, the two simultaneous

equations of the form,

f(x,y) = 0 , g(x,y) = 0 (A2.1)

having (cC,/5) as one of its real solutions can be solved

to obtain oC and / as follows:

The two functions can be expanded in a Taylor series

as,

o = f(o,/3) f(x , yk) + (m-x )fx(Xk, yk)

+ (/I-Yk)fIy (X ,Yk) +.......

(A2.2)
o = g(oc g(xk, Yk + (Cc -N gx (Xkyk)

+ A -Y )gy(X +...

where and Yk are the values of the kth iteration, If

OC and A in the terms on the right-hand side of the
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expansion are replaced by Xk+I and Yk+l' respectively,

and the terms nonlinear in (Xk+l- xk) and (Yk+l -Yk)

are neglected, the following recurrence formulae are obtained,

( &x k)f x (xk'Yk)+( &Yk )f (x k'Yk) = -f(x k'Yk)

(A2.3)
( Ax k)g× (x k'yk) + ( yk) gy(x ky k ) = -g(x k$ 7k

where Ax k = Xk+l -xk (A2.4)

and AYk = Yk+l :ykj

are the corrections of kth iteration.

The iteration is started at a value (x , y ) which
0 0

is sufficiently near (OC,/A ) and equations (A2.3) and

(A2.4) are used to obtain successively better values of

the roots of the equations (A2.1). The iteration is

continued until the corrections become smaller than some

assigned tolerance limit. The advantage of this method

over others is that this is a ?second-order' process; that is,

when the iteration converges, the errors in the (k+l)th

iterate tend to be linear combinations of the 'squares'

of the errors in the kth iterate.
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V

A2.2 APPLICATION OF THE METHOD TO THE PRESENT PROBLEM

As is explained in S 2.3.4, this method is used to

solve the governing equations (2.26) and (2.27) or (2.28)

and (2.29). The forms of equations used are as follows:

Using the notation

x el , y e4

k= Es Pt (1-1) and k3.= Rs Pt

2f 2f
c c

and substituting

e 2 = el + (e, - el) (t-d)

d
and e3 = el + (e 4 - el)

equations (2.2-6) and (2.27) become,
2 2

f(x,y) = k(xey) + x(x + xy 2+ y 0
e 3e c

g(xy) = 2 d 2 (Y -x) + , I 12e12
- t 6ec 12ec (A2.5)

- fi1y-c) 0

when e 2 * e and e3 e
- -
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f(x,y) =kle - k1  dx+(yx + kx + (y-x)(t-d)y n- [xt(-)~

+(y)-(X2 ± + X, 2 )- =

e c3e c2

g(x,y) k- dt x(y-x) k I dt (yX)2
tý- T2ýn IfI (A2.6)

k I 'e (,- ) k d aX
+ 1 2 T (y- - x~y

k d t(t-d) (7X2 + (_____

-2 T t6e

-(y-x) (Y+X) 4(-) 0

12 e T2

when e2 <e y and e3 ey

and

f(x~y) =2k1, e k 1± (x+y) + (x+Y) - '2+x~
y n e 3e 1

N= 0

gxy= d12 (- YX 2

2nxt 2 6e I(A2-7)

- Y-X) (Y+X) -I (Y-x) 0
12e2

when e 2 > e y and e 3 > e Y,

-1 8o-



Similarly equations (2.28) and (2.29) become,

f(x,y) ki _y~X) - + n x2 77 T (Y.-X)2

+ 4. -4 2 (Y-x) o

e c 3e c(A2.8)

2
k d t2k 1 d' ~(YX)

g(x,y) 2 ~ (Y-x)3 -f~- 7

k1 3 6' d (Y-x)3  + 73Y 1
-ý-n T-6e'

o 12e c

23
Y x + Y3X - V) 2

2e 6e0

when e2 (e7  and e,• ey j
k, k1L d( 2

f(x,y) =-ke (y-x) + (k, T -) x (y-x) +(kl-- -) _yX)

+Y2 Y32 YX 0

eC 3e c

g(x,y) =1 x~ ~ (y-X) + 2 n

+ -e~ (y-x) 2 + Y3~ 2 - x4 (A2.9)
t y6e 12e ' 2e'

3

6e= 0

when Ie21 > le.1 and e,3 Ke7
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f(x,y) =k.,x (y-x) + k., (t-d) (yx2+ l YX

k,1  k 1  d X2 + Y2

T - x(y-x) - -7 (y-x Ij~
e

C

FTN (Yr-x) = 0
3e 12

k. d e 7 ) ,d 2
g(x,y) T- r- y-x 2

- x(y-x) (A2.10)

kI1  d' d (YX) kc dl
- n- T- T~ yx ~-F ~-)

dt (t-d) ( _)

t6e 0  12e 2

x 2

2e I 6e 1

when I e21 < leyl and e3 >



k xk-x d 2
f(x,y) n n t (y-x)

+ _ _ (y-X) = 0
e t 3ec

c

d k, d x1~ x
g(x, y) =k I -L ey (y-x) 2n t- x•-)(A2.11)

Z - f- - ( y -x 3 + , ,
S6e 2e

c c

Y 2 _ + ax M ( y-x) (= 0

2e 6e;
c c

when 1e21 > leI and e,3 > e~,,,i>i I l,. >, e

The initial values (xo, Y,) for starting the iterations

of equations (A2.5) or (A2.8) are obtained as described in

Appendix I (i.e., x. = eel and yo = ee 4 ), while those

for starting the iterations of equations (A2.6), (A2.7)

or (A2.9), (A2.10), (A2.11) are obtained from the soluti6ns

of equations (A2.5) or (A2.8), respectively. If R is

negative, the terms e 4 and el are interchanged (i.e.,
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x = ej and y = el) and the same equations then are

employed along with the absolute value of M.

A2.3 MODIFICATION OF THE METHOD

The method described above has been found to be adequate

for most of the cases. However, it has to be slightly

modified in two cases. Both of these cases occur when the

load on the arch is near to the ultimate load. As

described in 2.3.5,the method of obtaining the ultimate

load consists of successively increasing the load by a

small amount and checking for failure at each step.

The following two types of difficulties can occur during

this process.

a) If the load on the arch happens to exceed

the ultimate load, the internal forces N and F acting

at the critical section (i.e., the section at which

the maximum concrete strain occurs) become too large

and the solutions of the governing force-strain relations

converge on erroneous values after going through a large

number of iterations. In a normal case, it takes a

maximum of only fifteen iterations to obtain the con-

vergence. Therefore, if for any case it takes more than
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say thirty iterations, to obtain convergence it is certain

that the internal forces are too large, caused by too

large a load. Consequently, the occurence of thirty

iterations or more is taken as a criterion to identify

the case of too large a load and to stop further

iterations.

b) In some cases when the load on the arch is

slightly less than the ultimate, the functions f(x,y) = 0

and g(x,y)= 0 describing the force-strain relations

exhibit a peculiar behavior. For clarity, this phenomenon

is discussed here for a function having only one variable,

say, F (Z)= 0. The recurrence formula for the 'Newton-

(12)
Raphson iteration' in this case is( ,

FC
,,Z~ =z -Z, --= -__

If the curve F( Z ) = Z is as shown in Fig. A2.1 and we

are interested in a solution 7 = - , we must start

the iteration at a value >7 such that F'( Z c ) (0

If instead, we happen to start the iteration at z < /,

the solution will converge on some value of z =;6

as shown in Fig. A2.1.
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S(Z) 0

(zzz 2ýoz
Figure A2.1 Function F (z) Z

In the present problem, under the action of

loads which are near ultimate, steel at many sections

yields and equations (A2.6), (A2.7), (A2.9), (A2.10) or

(A2.11) have to be used for such cases. As explained

before, the initial values for starting the iteration

for the first two equations are obtained from the

solution of equation (A2.5) while those for the last

three equations are obtained from the solution of

equation (A2.8). Both equations (A2.5) and (A2.8)

consider no yielding of steel and hence the stra ins

el and e4 obtained from these equations will be

necessarily smaller than those obtained from solutions

of equations (A2.6), (A2.7), (A2.9), (A2.10) or (A2.11).

This means that the initial values used for starting

the iteration are much smaller than the final values;
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that is, a case similar to the one when Z<7'(Fig.A2.l).

The situation is remedied as follows. It is

seen from Fig. A2.1 that unless Zk , the value of Z

at any kth iteration is positive, a convergence on Z 7'

is not possible. If at the end of any iteration &Z

turns out to be negative and larger in magnitude than Mk'

instead of using Zk+l = zk + &AZk [equation (A2.12)]

we use,

z k+- 1 (Z) (A2.U)

This alteration in the method assures that Zk will always

be positive and a convergence on Z may be possible.

The above-mentioned technique is used to

maintain the proper signs of the unknowns x and y (i.e.,

the strains el and e4 in the case of a positive M4 or

the strains e4 and el in the case of a negative M) by

using formulae similar to equation (A2.13). The proper

signs of the strains are known from the consideratioris

presented in Appendix I.
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APPENDIX III

CONCISED FLOW-CHART AND DIGITAL COMPUTER PROGRAM

STATIC CASE

MAIN PROGRAM SUBROUTINES

'NOLCAS' ' DTPRTS 9
n NRead input data - including archSTART Ii_ •geometry, properties of concrete

and steel, magnitude and type
S~of load, number of segments and

PintUWFppv 6 initial value of H- -±t ... .i
___ __ REAMT

Is the iteration cycle y Calculate HA, VA and VB
Just completed - an odd
numbered? ______

NOObtain section forces M, N and Q

Check if end deflectio frOm equilibrium equations

is within prescribed f
tolerance ._ _'STRNI'

La It the iteration cycle i assumption, obtain ee•4 and ee1
completed is No. 2, W le s- a c

change HB by some % 'STBN2
otherwise choose NBe b Netn

by extrapolation -- 1) Obtain e4 and e1 by 'Newton-

Raphson' procedure, then obtain
e2 , e3 .

2) Check yielding of steel and

Check for failure use proper equations, if

necessary

)FN- 3) If convergence is not possible
- in 30 cycles

m I Increase the load DEFLNS'

and also he loadCalculate e and i at all sections;

t hen obtain U's and W's at all

Decrease the loa~d by sections.

Print Fa e -
U's, forces and
strains
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APPENDIX IV

CONCISED FLOW-CHART AND DIGITAL COMPUTER PROGRAM

DYNAMIC CASE

MAIN PROGRAM SUBROUTINES

'NOLCAD' 'LOAD"
Calculate load at prescribed time

-START -

Read input data
including arch 'DISP i'

geometry; magnitude
type and time-depend Calculate U and W of all sections at
ence of load; number prescribed time based on U and W, UT
of segments; time and WT" at previous times; Also calculatevelocities________
interval PRINT INPUT -v

'STRN'
Calculate e., X and el, e 2 , e 3 and

Calculate arch e 4 ; Check yielding, unloading and

section, natural reloading of steel and set proper e 2

period,"& constants and e 3

Time = to= 0;'FORCE'Time t to = O; Calculate N and M - all sections
CALL LOAD; ____________________

Obtain WT",UT"-.
all sect. 'EQEOND'

Depending upon the type of loading,
choosing proper method, calculate 0, WT"

CALL PRINTR and UT" - all sections

t ='t+ 'PRINTR
Print time, N, M, Q, el, e4, WT", UT"

and velocities of all sections
CALL PRINTR

Only at certain
prescribed time

Check for failure

NO

SCheck if program is YE

to be stopped, no
failure

i NO
[ t = t + at • *

SPRINT Failure and
CALL PR INTR

Increase load by
prescribed value
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